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CONSERVATION LAWS OF LINEAR, HOMOGENEOUS SYSTEMS 

By J. R. Williams 
Electronics Research Center 

SUMMARY 

Conditions for a linear, uniform, homogeneous system to have 
nonsingular quadratic invariants, formed in the usual manner from 
constant metrics, are expressed in terms of properties of a 
Kronecker sum in the operator. Useful tests for the existence of 
such invariants are described. It is shown that system definition 
in terms of these invariants is not only restricted in its appli- 
cation but inconclusive. The interpretation of quadratic invari- 
ants, formed from metrics that depend on the space variable, as 
conservation laws is supported both formally and by physical argu- 
ments for the nonuniform system. A property of the Kronecker pro- 
duct and sum, that the Kronecker product of the matricants of two 
system operators is the matricant of the Kronecker sum of the opera 
tors, is then utilized to describe a useful procedure for obtain- 
ing the metrics, including the constant metrics. This property 
has application also in group-representation theory, and is used 
to obtain a representation of the abstract group onto a group of 
matrices that display the metrics defining the group. 

The operator for a linear, lumped system is treated within 
the framework of the theory. Techniques developed for uniform 
distributed systems are found to be appropriate, and a group- 
theoretical interpretation is given. 

I. INTRODUCTION 

In this report we present a theory of the conservation laws, 
expressed as quadratic invariants, obeyed by a linear, homogeneous 
system. The theory applies to a distributed system that can be 
described by a matrix operator, over the field of complex numbers, 
relating a state vector and its derivative in a single space vari- 
able; and to a lumped-system operator relating a state vector at 
two generalized ports. The distributed-system operator is allowed 
to be a function of the space variable under a weak assumption of 
bounded differentiability, thereby admitting nonuniformity in the 
system due to any physical mechanism. The nonuniformity could be 
due, for example, to nonuniform boundaries in a wave-guiding sys- 
tem, material inhomogeneity, or nonuniform coupling in a single- 
frequency or parametric device. New insight into the quadratic 



invariants of uniform systems is gained when these are considered 
in the context of the more general theory, and extended techni- 
ques for their study are developed. Operators for distributed 
and lumped systems are included in a unified theoretical treat- 
ment. We assume that the system has a finite number of degrees of 
freedom, but the fundamental results could be generalized. 

Important results concerning the nonsingular quadratic invari- 
ants of linear, uniform, homogeneous systems, and of linear lumped 
systems, have been given by Pease (refs. 1, 2, and 3 ) .  A space 
is considered to be defined by a metric, which specifies how the 
length of a state vector is to be measured, and a conservation 
law to be determined by each metric for which the operator becomes 
rotational. Under certain conditions on the eigenvalues and 
structure of the operator, the system will obey a set of conserva- 
tion laws determined by linearly independent nonsingular metrics, 
equal in number at least to the number of degrees of freedom of 
the system. The proof of this result provides a formal procedure 
for obtaining the metrics, a procedure that requires a determina- 
tion of the eigenvalues, eigenvectors, and generalized eigen- 
vectors of the operator. The metrics for which the operator be- 
comes rotational can also be obtained by writing out and solving 
the governing equations. A set of linear, homogeneous equations 
is obtained, where the coefficient matrix is of squared order 
compared with the operator and the metrics. Either approach can 
be tedious if the operator matrix is not of small order. 

Conversely, given two metrics of suitable form, a range of 
distributed-system operators that become rotational for either 
of these metrics can be determined. This range will in general 
be narrowed if more metrics are specified. The distributed sys- 
tem can be represented by a matricant - obtained by integrating 
the differential equations describing the system - which relates 
the state vector as a function of position to a boundary value. 
The specified metrics define a group for the abstract operator, 
the matricants determined by the metrics are a representation of 
the abstract group onto a Lie group, and the system operators are 
members of a corresponding Lie algebra. From this point of view, 
systems are defined by their conservation laws. We shall discover, 
however, that in general an operator is not determined uniquely 
by specifying all of the metrics for which it is rotational; in 
fact, the simplest class of operators for conservative systems 
will be determined only within a space of dimensionality equal 
to the number of degrees of freedom of the system. Most opera- 
tors do not become rotational for any metric. 

The coefficient matrix, obtained by writing out the equa- 
tions governing the metrics, while of squared order, signifi- 
cantly takes the form of a Kronecker sum. This has some practical 
as well as important theoretical consequences. First of all, it 
will permit us to develop a formal parallel to the theory developed 
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f o r  the operator, in terms of properties of the coefficient matrix. 
Existence criteria for nonsingular solutions, as well as other in- 
formation about the operator and the metrics, are expressed in 
terms of more accessible properties of the coefficient matrix: 
and equivalent procedures for obtaining this information for an 
operator in the restricted class considered can be compared with 
those available for testing the operator directly. 

With the theory reformulated in this way, we shall be able 
to complement the previous results by introducing metrics that 
vary with the space variable, and to confirm that these are re- 
quired for a definitive theory of this and the larger class of 
operators. Quadratic invariants formed from such metrics, in 
general, can meaningfully be interpreted as conservation laws, 
and uniform systems can be considered a kind of "singularity" 
for which this interpretation breaks down. These and the constant 
metrics can be obtained in a way that indicates that they, as 
well as the matricants, have overt group-theoretical properties. 
Not only is a useful procedure for obtaining the metrics revealed, 
but a representation of the abstract group explicitly in terms 
of the metrics is indicated. The Kronecker sum, formed from the 
distributed-system operator, will then be recognized as the opera- 
tor in the corresponding Lie algebra. Such a representation will 
be seen to be what is required for definitive system definition 
for the uniform system as well, which can be viewed as a limiting 
case when interpreting the invariants as conservation laws. 

We shall also discuss briefly another class of metrics that 
depend on the space variable, and that determine ranges of non- 
uniform systems in a manner very similar to that in which the 
constant metrics determine ranges of uniform and nonuniform sys- 
tems. While there is some basis for interpreting quadratic forms 
obtained from these as conservation laws, and while similar tech- 
niques for synthesis from these metrics can be employed, they have 
the same limitations for system definition as do the constant 
metrics. 

Operators for lumped systems, giving as they do "black box" 
descriptions, are less definitive in circumscribing the kinds' of 
systems they might describe. Their invariants have been obtained 
in a manner parallel to that for distributed systems, but this as 
well as the synthesis problem can in fact be reduced to the prob- 
lem for uniform distributed systems. From the point of view of 
group-representation theory, this reduction in the range of sys-  
tems that need be considered can be viewed as resulting from a 
homomorphic mapping of the group of abstract operators for the 
more general nonuniform system onto the full linear group. 

The material presented in this paper, like the results ob- 
tained previously, has broad applicability. So that it may be 
most generally useful, the presentation is abstract. No attempt 
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is made to discuss sophisticated physical applications; but guide- 
lines for the physical interpretation of results are indicated, 
and sufficient illustrative material is included to make the theo- 
retical points clear. 

11. BASIC CONCEPTS 

In this section we summarize, for review and reference, some 
results concerning the quadratic invariants of linear, uniform, 
homogeneous systems. The analytical techniques by which these 
results have been obtained are outlined, for comparison with the 
approach in Section 111, and several topics are pursued in more 
depth. Finally, we call attention to some tests for such invari- 
ants that are equivalent to applying directly the existence 
criteria that emerge in the formal development of the theory. 

The converse problem to the central problem discussed in this 
section is perhaps of even more fundamental importance. We re- 
view current concepts in dealing with this problem in Sections IV 
and VII, at more logical points in the development of this paper. 

The System 

We assume first a linear, distributed system having a finite 
number of degrees of freedom, such as can be described by a first- 
order differential equation of the form 

Here &is a column matrix, an n-dimensional state vector describ- 
ing the state of the system as a function of position, and 5 is 
an nxn matrix, the system operator. The components of %are con- 
sidered to be functions of the single space variable z ,  and the 
time dependence has been removed. Such a system is called homo- 
geneous, for Eq. (1) is homogeneous in s. 

As a simple example, on a voltage-current basis, 

,un =e, 
the system operator for a uniform transmission line of character- 
istic impedance Zo ,  having an associated propagation constant f3, 
is 
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The form of Eq. (1) is not as restrictive as may at first 
appear. It is not restricted altogether to the description of 
systems operating at a single frequency. Furthermore, order can 
be traded for dimensionality; and accordingly all systems of lin- 
ear differential equations, of finite order and dimensionality, 
can be reduced to this form. 

Metrics and Quadratic Forms 

Before discussing the conservation laws governing such a sys- 
tem, we first introduce the concept of a quadratic form, or gen- 
eralized inner product. This is a scalar quantity defined by 

where the superscript t denotes the complex conjugate of the trans- 
posed vector, and where g i s  a constant nxn matrix. 

describing physical properties of a system, we note that if the 
components of 5 are voltage and current, as in Eq. ( 2 ) ,  then with 

In order to suggest the appropriateness of such forms for 

the power may be written 

(6) - - -- I (v*I+vI*) P = x K x =  ,.-.I t ( V I )  * *  i; 4 

We postpone further consideration of the physical signifi- 
cance of these forms - except to point out that I& is taken to be 
constant so that the interpretation of s ( 5 )  will not depend on 
position. 

5 
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Equation ( 4 )  is a generalization of the unitary inner product 1. x x for which .& is taken as the identity matrix L, and provides 
e an, a more general definition of the square of the length of the vec- 
tor 5. The matrix &is called the metric of the space in which 5 
is said to be embedded, and as such can be considered to define 
the space. 

Appropriate Metrics and Invariant Forms 

whi 
for 

Of particular concern to us here will be those metrics Lfor 
ch s(&) is invariant under the operation &. 

' a given 5, we are interested in those spaces, if any, in which 
x can be embedded, such that its length will not vary with z .  
xssociated with each such &then is a conservation law, which pre- 
dicates a quadratic form that remains constant as &varies in 
accordance with Eq. (1). We shall refer to these K as the metrics 
appropriate to R-. 

Tn other words, 

a 

For s ( K )  to be invariant under the operation A M  R, it is required, 
by Eqs. (l)-and ( 4 ) ,  that 

where Et is the transpose conjugate of 5. 
for any x, for K to be appropriate to - R we must have 

Since Eq. (7) must hold 
Lu - 

t R K = K R  
WCI.. m C  

If & is a nonsingular solution to Eq. 
Hermitian. 

( 8 1 ,  is said to be c K- 

Thus far a restriction has not in fact been imposed on the 
elements of that they may not be functions of z. On the assump- 
tion that the system is uniform, however, and R is thus constant, 
results have been derived concerning the existFnce of appropriate, 
nonsingular E. 
the theory. 

Singular & have not been considered important to 

Necessary Conditions for Appropriate, Nonsingular E 
i For Eq. (8) to hold for some nonsingular C I U  K ,  R and - R must be 

related by a similarity transformation, 

R' = KRK-' - -I- 
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I 

This imposes conditions on the eigenvalues and structure of R. - 
The n eigenvalues of Emay be distinct, or some may be re- 

peated. Associated with each distinct eigenvalue f3i is a linearly 
independent eigenvector LI x(i,I), satisfying 

Associated with an eigenvalue repeated mi times are mi linearly 
independent eigenvectors and generalized eigenvectors, forming 
one or more chains. We shall use different subscripts to index 
repeated eigenvalues when these are associated with independent 
eigenvectors or separate chains, but we shall denote the number 
of eigenvalues equal to any Bi by mi 
The chain of length Ri, l<RiSmi, associated with the eigenvalue 
pi, consists of an eigenvector satisfying E q .  (lo), and if Ri>l, 
of generalized eigenvectors - x ( ~  f k )  , k = 2,3,. . . , Ri , satisfying 

(i.e., if f3i = B,, mi = mj). 

where & (i‘k) is said to be of rank k. A matrix is said to be 
semisimple if it has a complete set of n linearly independent 
eigenvectors - i.e., if the chains are all of length 1. It is 
necessarily semisimple if its eigenvalues are distinct. 

Now it is readily shown by Eqs. (10) and (11) that if two 
matrices & and are related by a similarity,transformation, & =  - S-lgZ, and if & has a chain & ( I r k ) ,  k = 1,2,. . . IRi, with eigen- 
value P i ,  then ghas a chain N*- SX(~,~), k = 1,2, ...Ri, with eigen- 
value Pi. 

Thus necessary conditions for the existence of a nonsingular 
solution & to Eq. (9) are that H and have the same eigenvalues 
and structure. 
jugates of the eigenvalues of &. 
k = 1,2,. ..,Ri, with eigenvalue Bi, 2 will have a chain 
k = 1,2,. . . , Ri, with eigenvalue 6 2  
the reciprocal eigenvectors and generalized eigenyectors of 
with eigenvalue f3i. The conditions then become that the eigen- 
values Bi of R either be real, 

But the eigenvalues of zt are the complex cqn- 
Also, if &has a chain x(+tk), 

- where the (w(i,k) ) +  are 

- 
* - Bi - Bi 

or occur in conjugate pairs, 

Bi = 6; (13) 
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such that chains of equal length are associated with f3 and f3 . 
i j 

Sufficiency of Conditions, Degeneracy, and Formal 
Solution - R Semisimple 

nM 

That these conditions on the eigenvalues and structure of 
are also sufficient, and that there will then be at least n lin- 
early independent, nonsingular &appropriate to &, can be shown 
by exhibiting the appropriate K-. 
for their determination is described. 

In so doing, a formal procedure 

On the change of basis 

I 

M CCL- 
x = sx 

where S is a constant, nonsingular nxn matrix, Eq. (1) becomes - 

where 

The quadratic form, Eq. (41, becomes 

where the metric on the new basis is 

I t  Since g i s  constant, is consFant. Accordingly, s ( K  NK ) will be 
invariant under the operation R if 

APn 

If s o ,  s(K) will be invariant under the operation R, since s ( K )  is 
independent of the basis. nnrr AM 

In particular, %can be chosen to be a modal matrix of R-- 
a nonsingular matrix, the columns of which consist of the n lin- 
early independent eigenvectors and generalized eigenvectors of lyvL R 
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(the complete set of eigenvectors, if I?+ is semisimple), with each 
chain arranged in the order of increasing rank. Since R is con- 
stant, S can be chosen constant. - 

nM 

Assume first that &is semisimple. Then under the transforma- 
tion of Eq. (16), if LIS a modal matrix, R will be diagonalized 
on the new basis. Thus M 

where Bi,appearing in the ii position, is the eigenvalue,that 
corresponds to the eigenvector x-(i,l) appearing as the i th column 
of S. If the pi are real or occur in conjugate pairs, the condi- 
tioron the structure is satisfjed automatically for ssemisimple, 
and R ' f '  will be obtained from R- 
of crnjugate pairs of eigenvalues. This interchange of positions 
can be effected by a similarity transformation, 

by interchanging the positions 

-1 where % =  $ 
tion if 6 .  = 'i, or in the ij and ji positions if Bi is complex 
and Bi = k ; .  

is a permutation matrix having a 1 in the ii posi- 

Then Eq. (19) becomes 
* 

1 1  

I." M.lU cu.L 
R 1  ( P K ' )  = ( P K  ) R  

Any diagonal matrix will commute with E'. Aycordingly, there 
wjll be at least n linearly independent metrics f-u- K 
R ; namely, 

appropriate to 
w 

1 

I 
I r O-- 

o--- 

\ 

\ 
a2 

\ 
--0 an 

are arbitrary constants. Furthermore, if &has an where al,a2, ... 
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repeated eigenvalues, then for each Bi = Bj two additional arbi-l 
trary constants are introduced, in the ij and ji positions of gk. 
The p constants, pzn, can ylearly be chosen to obtain p linearly 
independent, nonsingular 5 . 

Finally, a set of p linearly independent, nonsingular 5 
appropriate to F& is obtained by transforming back to the original 
basis. Inverting Eq. ( 1 8 ) ,  we obtain for each K 1 ,  

I\H 

Since Land ,€&I are nonsingular, &is also; and the linear indepen- 
dence of the K- follows from that of the 5 ' .  

R Not Semisimple 
nm 

More generally, if %is a modal matrix of F& %is transformed 
by Eq. (16) to a quasidiagonal matrix in the Jordan canonical form, 

a partitioned matrix in which, corresponding to each chain of 
length Ri, associated with the eigenvalue Bi, there appears an Rix 
Ri Jordan block, 

J .= 
-1 

0 0 Bi'\ I 
I 'A 0 
I I 

I 
I \ 1  '\ ' 

positioned in the same Ri columns of 
in S. By assumption, either pi is real, in which case 

as the chain is positioned 
/%A& 

J. = J* ( 2 7 )  
-1 -1 

1 

or there exists an R . x R  
B j  = 8 2 ,  such that 

10 

Jordan block of 2 with complex eigenvalue i i  

..... 



* 
J = J  -j mi 

We define a,permutation matrix& = E -1 partitioned in the 
same manner as 5 . Indexing the positions of the component sub- 
matrices by rows and columns of blocks, we put an RiXRi identity 
block I in the ii position of P (the position of,mJi in R ) if 

J. = J 
-1 mi' 
J*. Then 

NnR i I1M I n n  * 
or in the ij and ji positions if Bi is complex and Zi = 

4 
- I *  * *  
P 'RIP = R = quasidiag (LJl,LT2,. . . )  
A m  m a -  nM 

since the positions in & of each A and J. satisfying Eq. 
are interchanged by this permutation. 

( 2 8 )  -1 

t 
Let % be a modal matrix of Ai. Then 

* t since J. is the Jordan canonical form of Ai. Defining 
I U W l  

Q = quasidiag ( Q  ,Q ... ) 
Nw -1 -2' 

it follows that 

or 

Thus 

-1 K '  = QP 
IWI - M A  

is a solution to Eq. ( 1 9 ) .  

( 3 3 )  

Each of the Ri eigenvectors and generalized eigenvectors of 
which make up the columns of (lo, is specified only within an J? 

-1 ' 
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I 

arbitrary constant. The expressions for Q and K-, then, each 
contain n arbitrary constants. Equation r33) reduces to Eq.(23) 
for R semisimple, since postmultiplying instead of premultiplying 
by Pyl simply permutes the arbitrary constants. 

m 
1 

Again, if R- has more than one Jordan block withlthe same 
eigenvalue, there will be further degeneracy in the & .  The 
blocks i.n Q o f f  the quasidiagonal are not in general square, how- 
ever, and %e manner in which additional arbitrary constants are 
introduced becomes more complicated. 

As before, the p constants, p>r;l, can be chosen to obtain p 
linearly independent, nonsingular : and these can be trans- 
formed back to the original basis by Eq. (24). 

Lumped Systems 

Similar results are obtained for a lumped linear system, 
described by the equation 

x = Mx m 2  AMwl 
(34) 

where M.-is an nxn nonsingular matrix relating a state vector at 
two generalized ports of the system. We seek metrics K- such that 

1. -L 

x'Kx = X'KX -24-9 -1-4 

which requires that 

t M K M = &  
/\rm -MI 

(35) 

If 
Unitary. 

is a nonsingular solution to Eq. (36), M- is said to be llyc K- - 
Necessary conditions f o r 2  to be &-Unitary are that the 

eigenvalues Xi of Keither be of unit magnitude, 
* 

XiXi = 1 

or occur in pairs satisfying the cross-conjugacy relation 

(37) 
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such that chains of equal length are associated with X i  and A , .  
Again these conditions are sufficient to ensure the existence of 
at least n linearly independents for which L i s  K-Unitary. 

(36) are obtained as before by first 
transforming t o s  , the,Jordan canonical form of E. Then by a 
similar procedure t h e s  appropriate to are obtained in the 
form of E q .  (33). The positioning of the blocks in the permuta- 
tion matrix depends in the same manner on the self-conjugacy or 
cross-conjugacy of the eigenvalues in the associated Jordan blocks. 
The Qi are, in this case, modal matrices of the 

Am 

The solution? to Eq. 

(Jt)-I. 
/vk -1 

These results for a lumped system can be applied directly to 
the analysis of a uniform distributed system also, if Eq. (1) is 
first integrated. If k i s  nxn and constant, Eq. (1) will have n 
linearly independent solutions for % (The elements of &, in 
fact, need only be differentiable with bounded derivatives in the 
region of interest - this is known as the Lipschitz condition.) 
If any set of linearly independent solutions is arranged as the 
columns of an nxn matrix M ( z ) ,  then M ( z )  satisfies 

AM a+- 

The solutions to Eq. 
Since the columns of M ( z )  are linearly independent, we can form 
its inverse at any varue z1 of z .  

(39) are known as integral matrices of H. 
Thus we can define 

As the postmultiplication of M-(z) is by a constant nonsingular 
matrix, b T ( z , z l )  is stiil a nonsingular solution of Eq. (39). It 
is a particular integral matrix having the property 

M ( z , z l )  is known as the matricant of the distributed operator R. 
In view of E q s .  (39) and (41), IH* *N 

nw x(z) = p , z l ) ~ ( z l )  ( 4 2 )  

is a solution to Eq. (l), expressing &in terms of a boundary 
value. Equation ( 4 2 )  provides a lumped representation of the sec- 
tion of the distributed system between z1 and z .  

13 



By comparing the eigenvalues and structure of L a n d  g(z,zl), 
for %constant, we could demonstrate the equivalence of the condi- 
tions for &to be K-Hermetian and for&(z,zl) to be &-Unitary, 
with respect to thpsame number p>n of linearly independent K- 
(except that the degeneracy of& may be greater at discrete values 
of z) . If R- is semisimple, g(z,zl) will be also, with the same 
eigenvectors; the eigenvalues Bi of $are related to the eigen- 
values h of M(z,zl) by i m 

2jBi (z-z,) 
hi = e (43) 

The equivalence of Eqs. ( 1 2 )  and (13), the conditions on the Bi, 
and Eqs. (37) and (381, the conditions on the hi, is clear, and 
only at discrete values of z can Xi=Xj if BifBj. If E is not semi- 
simple, the generalized eigenvectors of $.-and M(z,zl) will not be 
the same - in fact, the generalized eigenvectoys of PI(z,zl) will 
depend on z; but the chain of R with eigenvalue pi will be re- 

-jBi (z-z,) 
flected into a chain of M(z,zl) with eigenvalue e 

we will obtain in fact the same appropriate metrics K-by either 
approach. For let &be a metric appropriate to Z(Z,Z~), satisfy- 
ing Eq. (36) for all z. Differentiating, we obtain 

- 
- 

We do not need to compare details of the theory to see that 

Substitution of Eq. (39) and its transpose conjugate gives 

t t  j E  (R K-KR) M = 0 
.MIVlmn** mr 

(45) 

Since M- is nonsingular, we can premultiply by -j (Et)-' and post- 
multiply by &-I, yielding Eq. 
be appropriate to E. The ste s are also reversible, except that 

then evaluate it at any value of z, by Eq. (41) this constant 
matrix must be K-, which proves the converse. 

applies as well if &is not constant, for any constant solutions 
to Eq. ( 8 ) ,  or to Eq. (36) if M is the matricant. 

( 8 ) ,  which is the condition for &to 

Eq. (44) requires only that P p4be constant. But since we can 

We note for future reference that the preceding result 

nm 

Thus any linear, distributed system, described by a system 
operator E satisfying the Lipschitz condition, has an equivalent 
lumped representation described by the matricant M(z,zl) of rrm R ,  

wn 
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the particular solution of Eq. (39) satisfying the boundary condi- 
tion, Eq. (41). Only in special cases (including I& constant) are 
there exact procedures for obtaining this solution. But if the 
matricant representation is given, it is simple to obtain 5 
verting Eq. (39), 

In- 

The operators .&and MJz,z ) have the same appropriate metrics, 
constant K satisfying bot& Eqs. (8) and (36). 

MA 

We also point out that a lumped system - for constant, non- 
singular g, not a matricant - can be represented equivalently by 
a uniform distributed system. We write 

' -1 M = S M S  
rrrvr I.--- 

where S is a modal matrix of 2, and - 
M' = quasidiag (LJ1,Lr2,. . . )  
m 

(47) 

is its Jordan canonical form. The RixRi Jordan blocks are given 
by Eq. ( 2 6 ) ,  with X i  replacing Bi. For each Ai we define a Bi 
(which may be complex) as the solution to 

- j BiL 
e - - Xi, -IT < ReBil IT (49) 

where L is an arbitrarily chosen equivalent length. We define 
R.xR blocks i i  

A -]Biz 
J .  ( z )  = e 
-1 

0 1 - j z  
2 

( - j z )  
2 :  

I 
0 0 1 - j z  I 

I 

I 

\ ' (50)  
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These have the property 

where ,$iB)is the Jordan block of Eq. ( 2 6 ) x  fith eigegvalue Bi. 
A l s o ,  Ai is the Jordan canonical form of 3 (L) , and 3 (0) = Lfi We then define i 

. 

A A 

where & is a modal matrix of z i  (L) , and ~Ji(z) has the properties 

J .  ( 0 )  = I 
A M 1  - 2  i 

We form 
A A  

A M  T = quasidiag ('J?l,~2,...) 

M I  ( 2 )  = quasidiag (J ( z )  ,J ( 2 )  ,.. . )  
n r w l  J d  m 2  

It then follows that 

(55)  
- 1 11 -1 M(z,O) = SM'(z)S-' = ST M (z)TS .AM.--. 

*m- Nr - r r  - rrm 

is the matricant of a uniform distributed system, with operator 

where 

and satisfies the boundary conditions 
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M(L,O) = M 

M ( 0 , O )  = A  
A m  nM 

A M  

In general, S is a modal matrix of &li(z,O) and 2' ( z )  is its 
Jordan canonical Yorm only at z = L, but SS-1 is a modal matrix 

-jBiz 
of R. If $ is semisimple, &(z) = e . Then 3' ( z )  is the 
Jorzan canonical form of z(z,O) and S is a modal matrix of both 

lur, M(?,O and &. In this case R is detrrmined quite simply as & = 
SR S - l ,  with the f3i obtainepfrom Eq. (49). 
Iwlm /vu 

The significance of this result is that we shall be able, 
without loss  of generality, to develop the subsequent theory with 
a focus on distributed systems. Whatever the physical basis for 
the transformations they describe, lumped systems can be treated 
by techniques developed for uniform distributed systems. At this 
point we can observe that the metrics appropriate tozwill be 
the constant solutions to Eq. ( 3 6 )  for the matricant of Eq. ( 5 5 ) ,  
and may therefore be obtained as the solutions to Eq. (8) for 
in Eq. (56). That these will be all the appropriate &is ensured 
by restricting ReBi in each case to the interval indicated in 
Eq. (49) - in fact, we need only require that Pi = 8 3  when X.X*=l. 

1 3  

Hermitian Metrics 

Interest has centered on real invariant quadratic forms as 
representing real physical quantities conserved by the system. 
For s ( 9  to be real, it is required thatsbe Hermitian - i.e., 
K = &'f. But the &determined by the procedure described will 
not in general be Hermitian. 
ian K.) 
/vvl (Hermitian K' do not imply Hermit- 

MA 

m 

Hermitian5 for which & is &-Hermitian or & is $-Unitary 
can, however, be formed from any set of ap ropriate, nonsingular 
K. If & is appropriate to the operator, &y is also appropriate, 
as can be seen by taking the transpose conjugate of both sides of 
Eq. (8) or Eq. ( 3 6 ) .  Moreover, the appropriate K- define a space - 
since Eqs. ( 8 )  and ( 3 6 )  are linear, linear combinations of appro- 
priate metrics are appropriate a lso .  
we can form appropriate metrics 

Ivn 

Thus from the given s e t s  

(59 )  
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which will be Hermitian for ai and bi real. 
and bi can always be chosen so that K 

Furthermore, real ai 
andEbi are nonsingular. 

i -a 

It may be shown that, of the 2p Hermitian metrics obtained 
by Eq. ( 5 9 )  from a maximal set of p linearly independent, appro- 
priate &, exactly p will be linearly independent. Given a set 
of p linearly independent, Hermitian metrics I&i appropriate to 
an operator describing a physical system, however, it does not 
follow that the physical significance of each of the associated 
quadratic forms will be apparent. But the &i span a subspace 

of the space spanned by the ,Ki. Linear combinations cishi will 

be Hermitian for Ci real, will include all appropriate, Hermitian 
metrics, and may generate quadratic forms having clear physical 
interest. The physical interpretation of the invariant forms of 
a system presents a separate problem in every individual case, 
beyond the determination of a linearly independent set of mathe- 
matically appropriate forms. 

By way of example, the system operator &for a uniform trans- 
mission line, given by Eq. (3), has two distinct eigenvalues + 8 ,  
which, assuming a lossless line, will be real. We therefore- 
expect that there will be two linearly independent, nonsingular 
metrics K appropriate to R; and we find as an Hermetian set, 

m A h  

0 

s - z  4 1 z O  O I  

( 6 0 )  

We have seen by Eq. (6) that the quadratic form constructed from 
K represents the power. From K we obtain d Am2 

which is the sum of the powers in the forward and backward waves. 
In this form the conservation law is somewhat unfamiliar. But 
the net power s (&)  can be written also as the difference between 
the powers in the two waves, and we can form 

18 
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1 2+ = z 

K 
m- 

- 1 --- 
2 

&+E2 

zO -I zO 

Then s(,I&+) and s($'K) are invariant also, and signify that power 
is conserved in each wave separately. 

We observe further that the metric 

wd LC -_ - 

0 

0 

w&G 0 L O I  

where L and C are respectively the distributed inductance and 
capacitance per unit length, is also appropriate. Then 

is invariant, and is recognized as the total electric and magnetic 
stored energy per unit length on the line. 

There may then be any number of invariants of physical inter- 
est. Only p can be independent, but these may not give explicitly 
the information we seek. We chose the metrics Hermitian, after 
all, in order to obtain an explicit physical interpretation. An 
examination of the space of Hermitian metrics with a view to 
identifying invariants of physical interest can lead also to a re- 
cognition of relationships that may not otherwise be obvious. The 
same relation will obtain among the s ( K )  as among the K. If 

ryv\ cwr 

19 



x a . K  = 0 1.-i .*M i 
(65) 

t h e n  

I n  t h i s  case, 

Then 

2 8  The s t o r e d  energy p e r  u n i t  l eng th  i s  t h u s  t i m e s  t h e  sum of  t h e  
powers i n  t h e  forward and backward waves. 

A s  ano the r  example, a lumped s h u n t  susceptance  jb i s  re- 
p resen ted  on a vo l t age -cu r ren t  b a s i s  by t h e  o p e r a t o r  

rvrrr M=( 7 
-jb 1 

This  o p e r a t o r  has  a p p r o p r i a t e  metr ics  of t h e  form 

One choice  of t h e  a r b i t r a r y  c o n s t a n t s ,  f o r z l ,  aga in  g i v e s  t h e  
m e t r i c  of E q .  ( 5 ) ,  i n d i c a t i n g  t h a t  power i s  conserved.  Another 
cho ice  g i v e s  
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which implies that 

* 
S W 2 )  = ( 7 2 )  

is conserved. The constancy of the voltage across the network 
appears here in a somewhat weakened form. 

The &of Eq. (70) can be chosen nonsingular, but22 is sin- 
gular (as are 5 and & in Eq. (60)). The space of appropriate 
Hermetian metrics will include singular metrics, even if we have 
gone to the trouble to choose the metrics that span this space 
nonsingular, and these may be of interest. The nonsingularity of 
the $hi does not ensure the nonsingularity of linear combinations. 
Conversely, a linear combination of singularzhi can be nonsin- 
gular (as in Eq. (67)). In attempting to interpret our results 
physically, then, it is not important that we choose Hermitian 
metrics by Eq. (59) to be nonsingular, only that we choose a 
linearly independent set. Later, however, it will be significant 
to know that a nonsingular set exists. 

The assumption that Hermitian metrics lead to quadratic 
forms that represent real physical invariants can also be mis- 
leading. For example, the operator for a lumped shunt resistance 
r, 

has the same repeated eigenvalue X = 1 as the operator of Eq.(69) 
for a lumped shunt susceptance jb. It will, therefore, also have 
appropriate Hermitian metrics, even though real power is not con- 
served. From one of these, 

with x as in Eq. (21 ,  we obtain 
Ann 

2 1  



The imaginary part of the complex power - a real quantity, to be 
sure - is thus conserved. This example (see also Example 2 of 
Section VI) suggests that the special significance attributed to 
Hermetian metrics should not be pushed too far. 

While such simple systems are adequate vehicles for these 
several comments, examples of more interesting systems obeying 
conservation laws are given by Pease (refs. 1,2, and 4 ) .  

Testing the Operator 

The conditions given for the existence of appropriate, non- 
singular &are conditions on the eigenvalues and structure of the 
system operator. It may be pointed out, however, that it is not 
necessary to obtain the eigenvalues, eigenvectors, and generalized 
eigenvectors directly, in order to determine whether these condi- 
tions are satisfied. 

The eigenvalues Bi of R are the roots of the characteristic 
AAA equation, 

(76) Bn-l R - B I I  = anBn + an-l +...+ alB + a. = 0 1- m 

where I is the identity matrix. It is well known that the condi- 
tion fpr the roots of an algebraic equation to be real or occur 
in conjugate pairs is that the coefficients ai be real, and so it 
is not necessary to solve Eq. (76) to obtain this information. In 
the case of the lumped-system operator, the eigenvalues hi of% 
will satisfy Eq. (37) or Eq. ( 3 8 )  if and only if M and ($?)-I 
have the same eigenvalues, and thus the same charaseristic equa- 
tions, and it is only necessary to write these out and compare. 
This provides a preliminary check on a necessary existence condi- 
tion, relatively simple even for a matrix of large order. 

The suitability of the eigenvalues and structure of& or 
for the existence of nonsingular solutions to Eq. (8) or 
can be determined by putting the A-matrices &? - XAand am- Ah 
or ,&f - AA and M - l  - A&! in their Smith normal forms. This is 
accomplished fo? a matrix&, defined over a field F, by a seq- 
uence of elementary A-matrix transformations defined by the follow- 
ing operations on & - XI: 

m 
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1. The interchange of two rows (Columns). 

2. The multiplication of all elements in a row (column) by 
a nonzero scalar in F. 

3 .  The addition, to all elements of a row (column), of the 
corresponding elements of another row (column) multi- 
plied by a polynomial p(A) over F. 

By a systematic application of these transformations, A - AI can 
be put in its Smith normal form, m I\m 

where each fi(h) 
1, which divides fi+l(A); where flf2 - * *  fp, p = 1,2, ..., r, is 
the greatest common divisor of all p-square minors of& - A&; 
and where r is the rank of A. 
&and %can be related by a similarity transformation if and only 
if their characteristic matrices 
Smith normal form (ref. 5). 

is a polynomial in A,  with leading coefficient 

It can be shown that two matrices 

- XLand B - XIZ, have the same 
ruw 

A similar procedure, in which the complications of operating 
on polynomials are traded against the need to examine matrices of 
higher order, together with other procedures for obtaining infor- 
mation about the operator, will be described in Section TI1 under 
"Testing the Kronecker Sum.'' The degree of fr(X) , which can be 
shown to be the minimum polynomial of A- (see Section IV), gives 
some measure of the degeneracy ink, but not as much information; 
therefore, we will not pursue this point. 

111. DEVELOPMENT BY KRONECKER-SUM FORMALISM 

In the previous section, we discussed conditions for an opera- 
tor to have appropriate nonsingular metrics, a formal procedure 
for determining the metrics, and the degeneracy of solutions. The 
metrics could also be obtained by writing out Eq. (8) or Eq. ( 3 6 )  
in detail, and solving the resulting set of linear, homogeneous 
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equations. Short of solving these equations, we could determine 
the rank of the coefficient matrix and thereby the number of 
linearly independent solutions we can expect. Tn general, this 
procedure, applied to a set of homogeneous equations, would not 
tell us whether matrices formed in a prescribed manner from the 
vector solutions could be chosen nonsingular. Moreover, this 
would seem to be only an ad-hoc procedure - not necessarily simp- 
ler: and not to provide a formal theory of the conservation laws 
based on properties of the system operator. 

Writing out either of these equations, however, yields a co- 
efficient matrix that can be identified as a Kronecker sum (which 
incidentally provides an efficient means for obtaining this matrix). 
The Kronecker sum has useful properties that will enable us to 
obtain expressions for the number of linearly independent metrics, 
in terms of the eigenvalues and structure of the system operator, 
by this approach also; and more significantly, to express the 
conditions on the operator for the existence of nonsingular solu- 
tions, and the degree and type of degeneracy in the operator, in 
terms of properties of a subspace of the space spanned by the 
eigenvectors and generalized eigenvectors of the coefficient 
matrix. 

It is the number of repeated zero eigenvalues and the number 
of linearly independent eigenvectors with zero eigenvalue, to- 
gether with certain upper bounds on these numbers, that must be 
determined in order to obtain the information we require. The 
upper bounds can be determined as the number of repeated zero 
eigenvalues and the number of linearly independent eigenvectors 
with zero eigenvalue of a related Kronecker sum in the operator. 
Matrices of the order n2 x n2 must be examined, but the subspace 
spanned by the eigenvectors and generalized eigenvectors with 
zero eigenvalue is the simplest to investigate. Moreover, the 
Kronecker sums can be compared under a simpler transformation 
than that to the Smith normal forms. In any event, a formal equi- 
valent to the theory developed in Section I1 is obtained by this 
approach, together with procedures for testing an operator that 
can be useful in particular problems and can, in fact, give some- 
what more information than the tests described in Section I1 under 
"Testing the Operator." The formal equivalent to the procedure 
for obtaining the metrics may be considered to be provided by the 
procedure to be described in Section VI. 

Kronecker Product 

The theory of the Kronecker or direct matrix product, and of 
the Kronecker sum, is a standard topic in matrix theory (refs.3, 
6, and 7). The direct product is defined and some of its pro- 
perties are summarized below. 
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The direct product of two nxn matrices & =  (aij) and B = (bij), 
rzM denoted by E$, is defined as the n2xn2 matrix 

A x B =  
m n u r  

all% 

a B  
I 
I 
I 
I 
I 

21- 

a ’  B- nl M 

( 7 7 )  

Here &xgis written as a partitioned matrix, with nxn blocks each 
consisting of the matrix gmultiplied by an element ai of &. For 

the same order, although the theory applies more generally. CUA 
our purposes we restrict attention to square matrices ~ A and B of 

The elements of C 2 c a n  be written 

where double indices are used to indicate the ordering of the rows 
and columns of the direct product, each double index running 
through the values 11,12 ,..., h,21 ,...,2n,...,nl,...,nn, in that 
order. 

The direct product is distributive, 

and associative, 

but not commutative, 

It also satisfies a matrix-product relation, 



Let x (r) = (x:')) be an eigenvector of A with eigenvalue hr, and 
y(s)w= (yls) be an eigenvector of B with eigenvalue us. 
"G(r ,  Define 

as the n2-dimensional vector having components 
(uh 

3 where the double index ij again represents a single index runnin 
through values 11 to nn in the same order as before. Then u(rrS is an eigenvector of AxB with eigenvalue X 1-1 nm 

m m  r s '  

If A and are semisimple, Eq. (83) gives n2 linearly in- 
dependenT eigenvectors, and AXB is semisimple also. 

M n -  

The eigenvalues of Eg, whether or not Aand gare semisimple, 
are the n2 multiplicative combinations Arps, with all multipli- 
cities of the Xr and the ps included. If L a n d  k a r e  nonsingular, 
their eigenvalues will be nonzero, and AXB will accordingly be 
nonsingular also. AMm 

The Kronecker Sum 

The Kronecker sum of two nxn matrices A and B which we de- 
note by A(A,BJ, is defined as the sum of t$ dire$ products, of 
the form IIMm 

where A i s  the nxn identity matrix. 
is not a commutative relation, 

Like the direct product, this 

If x(I) is an eigenvector of & with eigenvalue A 
is an eirenvector of ,F&with eigenvalue u s ,  then u(r,sy: with-com- 
ponents defined by Eq. (83), is an eigenvector oFA(A,B) with 
eigenvalue Xr+ps. 

and y(S) 

*nM- 

Again if 2 and g are semisimple, &(&,B-) is semisimple also. 
In any case the eigenvalues of fl(A,g) are the n2 additive combina- 
tions Ar+ps, with all multiplicities of the Xr and the ps included. 

Degeneracy in A (A,B) 
wAAM(H.r 

From the eigenvalues Xr of A a n d  ps of E, it is easy to deter- 
mine the number of repeated eigenvalues of A(A,B) equal to Ar+ps, 

nnr,nmJun 
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for given values of r and s. There will be the same number of 
linearly independent eigenvectors and generalized eigenvectors of 
A(A,B) in chains with this eigenvalue, and these will span an 
eigensubspace. We shall have need to know the number of linearly 
independent eigenvectors in such an eigensubspace. In general, 
if ,&and &are not semisimple, the derivation is involved, although 
the expressions are simple and will be given without proof. 

W,(un nm 

First, however, let us determine the dimensionality of a 
given eigensubspace. The indices r and s are assumed to run over 
values indexing the linearly independent eigenvectors, or separ- 
ate chains, of &and %respectively. 
is a chain of A of length Rr, and for each value of s a chain of 
B of length E,? Then, each Xr is of multiplicity Rr, and each 
US is of multiplicity R s .  

For each value of r there 

NI)) 

There can be more than one value of r for which the hr are 
equal, and more than one value of s for which the US are equal. 
The number mr of repeated eigenvalues of &equal to A,, including 
multiplicities, is the same for each of these values of r. If we 
choose a representative value r from this set of r, we can denote 
the number of repeated eigenvalues of hequa1 to Ar by mr, for 
each r in this set. Similarly, we denote the number of repeated 
eigenvalues of B equal to us by m,. Then we can write 

(vvr 

R s  = m- >: S-F S 

where by r-T we denote values of r such that Ar=Xr, and by s--V 
values of s such that ~.l~=ug. 

By the property indicated in Section I11 under "The Kronecker 
Sum," the eigenvalue Xrtps of &(A,%), for given values of r and s, 
will be repeated RrRs times. The number of repeated eigenvalues 
Xr+pS, for all r-F and all s-s, is then - 

r-r r-r s-s 

s-s 
- 

But there is yet another way in which b(&B) can have repeated - 
eigenvalues. For distinct values of F, Fl#Z2, and of s, sl#S2, 
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such t h a t  A T  # A T  and pg # ug , i t  can  be t h a t  A- + uz = 
1 2 1 2 1 1 

r 
- -  

A- + 1.1- . L e t  u s  choose a r e p r e s e n t a t i v e  p a i r  (T,S)  from each  

se t  of o rde red  p a i r s  (F,S) f o r  which t h e  A =  + 1.1, are equa l .  W e  
'2 s 2  

~ -L= a ~ 

denote  t h e  p a i r s  i n  such a set  by (F,Z)-(r,s). Then t h e  number o f  
r epea ted  e igenva lues  Ar+ps=AT+Yg, coun t ing  a l l  r-r and s-S, 
a l l  ( r , z ) - ( F , Z ) ,  i s  

f o r  

- - C m-m- (88) C - -  C - 2,'s - -  r s  
(tT,S) - (r , E)  - -  

(F,s)-(r ,s)  r-r 

Equat ion (88)  g i v e s  a l s o  t h e  number of l i n e a r l y  independent  
e i g e n v e c t o r s  and g e n e r a l i z e d  e i g e n v e c t o r s  w i t h  e igenvalue  A,+pz. 

Among t h e  e i g e n v e c t o r s  w i l l  be t h e  
f o r  a l l  F-7, 3-5, (T*S)-(P,3). But u n l e s s  e i t h e r  &or L i s  s e m i -  
s imple ,  t h e r e  w i l l  be more. The number of l i n e a r l y  independent  
e igenvec to r s  w i t h  e igenva lue  A =  + p= w i l l  be g iven  by 

( r ' s )  d e f i n e d  by E q .  ( 8 3 ) ,  

r S 

where by min (m,n) w e  denote  t h e  smal le r  of  t h e  i n t e g e r s  m and n .  
Moreover, p== w i l l  be w i t h i n  t h e  l i m i t s  rs 

min (m- m-) 5 p== 5 m-m- ( 9 0 )  - -  r s  - -  - -  r '  s rs - -  
( r  , s)-(r ,  s )  

c 
( U ,  S )  - (r , s ) 

and w i l l  a t t a i n  the-upper l i m i t  i f  and on ly  if R r  = R s  = 1 f o r  a l l  
r-r, s-s, ( F , Z ) - ( r , s ) .  A necessa ry ,  b u t  n o t  s u f f i c i e n t ,  c o n d i t i o n  
f o r  pFE t o  a t t a i n  t h e  l o w e r  l i m i t  i s  t h a t  t h e r e  be on ly  one r-r o r  

on ly  one s-s ( i . e . ,  R- = m- o r  R- = m-) f o r  each ( r ,s)-( r ,s)  

- -  - -  _ _  
- 

- -  - -  - -  - 
r r S S 

W e  s h a l l  be p a r t i c u l a r l y  i n t e r e s t e d  i n  t h e  s p e c i a l  case 
where mF = mS f o r  a l l  ( T , S ) - ( T , z ) .  The l i m i t s  t hen  become 
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c - m- r -  < p== rs 5 C - m z  r 
Y 

where t h e  summations a r e  over  a l l  F f o r  which L e r e  e x i s t  3 such 

t h a t  ( T , Z ) - ( F , Z ) .  I n  t h i s  c a s e  t h e  lower l i m i t  - -  i s  a t t a i n e d  i f  
and only i f  R- = m- o r  R- = m- f o r  each (P ,s ) - (P ,S ) .  

A s i g n i f i c a n t  f e a t u r e  of t h e s e  r e s u l t s  i s  t h a t  l u A -  A ( A , %  
e x h i b i t  c o n s i d e r a b l e  degeneracy even when t h e r e  is no degeneracy 
i n  & o r  E. 
o p e r a t o r  can have a number of a p p r o p r i a t e  m e t r i c s .  

- -  

r r S S 

can 

This  w i l l  account  f o r  t h e  f a c t  t h a t  a nondegenerate  

The Equation AX + HkT=L 
nMm 

One a p p l i c a t i o n  of t h e  Kronecker sum i s  i n  t h e  s o l u t i o n  of 
t h e  equa t ion  

AX + XBT = C 
"YI aMmR FM 

f o r & =  ( x i j ) ,  X - a n n x n m a t r i x .  H e r e & =  ( a i j ) ,  $ =  ( b i - 1 ,  and 

of B.  
C = ( c i a )  a r e  g iven  nxn m a t r i c e s ,  and kT = ( b j i )  1s t h e  i! ranspose  
M% 

&y Eq. ( 7 8 ) ,  and wi th  t h e  use of t h e  6 €unc t ion ,  
I\M 

1,i = j 
d i j  = 1 

0,i f j 

Equat ion ( 9 2 )  can be w r i t t e n  i n  d e t a i l  as 

+ C X i h b j h  h = kh ( a ikd jh+Sikb jh )  Xkh k 

I f  w e  d e f i n e  n2-dimensional column v e c t o r s  x" and c I 1  having com-  
ponents  X i j  and c i j  r e s p e c t i v e l y ,  where i n  each case  t h e  double  
index  i s  t r e a t e d  as a s i n g l e  index running over  n2 v a l u e s  accord-  
i n g  t o  t h e  o r d e r i n g  convent ion adopted a t  t h e  beginning of t h i s  
s e c t i o n ,  t hen  Eqs. (93)  are a r ende r ing  i n  d e t a i l  of t h e  s i n g l e  
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matrix equation 

We shall be interested, in this section, in the nontrivial 
solutions of Eq. (94) when is the null vector. A necessary 
and sufficient condition for 

to have a nontrivial solution is that the determinant of A-(&,a 
vanish, or equivalently, that A(&,&) have a zero eigenvalue, which 
may be repeated. 
times, the rank r of l l ($,D can be anywhere in the range n2-pmgr_< 
n2 - 1. There will then be n2 - r, or between 1 and Pm, linearly 
independent solutions to Eq. (95). 
thought of as vectors in the null space of A(.A,g), the space 
spanned by the linearly independent eigenvectors of A(&,&) with 
zero eigenvalue. This is a subspace of the zero-eigenvalue eigen- 
subspace of A(%%, the space spanned by the pm linearly indepen- 
dent eigenvectors and generalized eigenvectors with zero eigen- 
value. 

If A(&,,) has a zero eigenvalue repeated pm 

The solutions 5" can also be 

These remarks apply in general to linear homogeneous equa- 
is a Kronecker sum, we can be more parti- tions;but since .A(&,B 

cular. The number o& linearly independent engenvectors of A,(&,$ 
with zero eigenvalue is given by Eq.  (89) for AT + 11; = 0, and 1 s  
in the range indicated by Eq. (90). 

Furthermore, in our application &and kwill be forms of the 
same operator. This will enable us to develop relations between 
Kronecker sums in different forms of the operator that are equi- 
valent to relations between forms of the operator described in 
Section 11. 

Equation (92) has been studied by other approaches (refs.8 
and 9), and this is not the only route by which we could arrive 
at the results to be obtained in this section. But we shall be 
interested more generally in Eq. (92) for C = j(dz/dz), and we 
shall find that the operator in the form LT&,g) can be identified 
with the conservation laws in a quite fundamental sense. Express- 
ing results in this section in terms of properties of the zero- 
eigenvalue eigensubspace of A ( A , B ) ,  then, exhibits them as one 
facet of the theory. w m -  
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Structure of the Zero-Eigenvalue 
Eigensubspace of A (R ,-R ) - f - T  

nmw m 

By E q s .  ( 9 2 )  and ( 9 4 ) ,  Eq. (8) can be written in the form 

where k-" is an n2-dimensional column vector formed from the ele- 
ments of &in accordance with the convention adopted. 
efficient matrix is of the form 

The co- 

/ *  T r* I -  --_--_--- r * \  I 
2 l m  nlm r I-R 11- m 

r* I 
i 
I 
I 

T 
22- RA.3 12- I 
r* I-R 

I 
r* I n (n-l)m 

I \ 

where the entries shown are nxn blocks. The nontrivial solutions 
to Eq. ( 9 6 )  are the eigenvectors of k(kt,-$T) with zero eigenvalue. 

If we apply the results given in Section 111 (under "De- 
in an analysis of &(&f,-RT) under various generacy in lI(A,g)") 

conditions on %e eigenvalues and structure or&, we find that we 
can express the results of this analysis in terms of four signifi- 
cant parameters. *By (T ,Z) - ( ? , s ) ,  we refer to all ordered pairs 
(7,s) such that f3r = Bs, where 'P and s index distinct eigenvalues 
of &. The expressions in Section I11 (under "Degeneracy in a(&,,B) " )  
then apply with reference to the zero eigenvalue of A (st,-$) . 
Otherwise the notation is as explained there. We note that for 
the eigenvalues of &to be all real or occur in conjugate pairs, 
it is required that the f3r be all real or occur - -  in conjugate pairs, 
and in addition that mF = ms for all ( T , E ) - ( F , S ) .  

values of A(Rt,-RT), which from Eq. (88) is given by 

- 

The first parameter is the number of repeated zero eigen- 
N u l r \ M  m 
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where the summation is over all ( T I S )  such that f3; = 6, , and mF 
and mE are the number of repeated eigenvalues f3r and BS of 
cluding multiplicities, equal to f 3 ~  and f 3 ~  respectively. 

in- 

The number of linearly independent eigenvectors of h(ET I -ET) 
with zero eigenvalue (the number of linearly independent metrics 
appropriate to R) from Eq. (89) is given by 

m 

where we drop the subscript on pI since we will be concerned only 
with the zero eigenvalue. In Eq.  (99),Rr and R s  are the lengths of 
the chains of %with eigenvalues pr  and Bs respectively. 

That mF and mg in Eq. (98), and R, and R s  in E q .  (99), can 
be interpreted as indicated, althou h strictly they refer to the 
eigenvalues and chains of RT and -R 9 , is easily shown. 

rw MA 

The other two parameters are summations over all ' P I  indepen- 
dent of the character of the eigenvalues of R. The first is de- 
fined by 

- Let the values of Rr for r-F be denoted by Rr , r-r, and be 
arranged such that i 

'r >-E , i=1,2, ... 
i ri+l 

The fourth parameter is then defined by 
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The following relations can then be shown to hold: 

min (mF,mg) 5 P I pm< pm 1 >: - -  
(F,z j - (? ,G)  

P5 P' 

where 
- -  - -  

A. p>O if h > O ,  for then the set (y,g)-(r,s) is not empty. 
From another point of view, if Pm>O, A($f,-sT) is singu- 
lar, in which case Eq. (96) has at least one nontrivial 
solution. 

B .  pzn if the eigenvalues of &are real or occur in complex- 
conjugate pairs. In this case,p=n if and only if a single 
chain is associated with each distinct real eigenvalue 
of &and with at least one of each distinct conjugate 
pair. If chains of equal length are associated with dis- 
tinct conjugate pairs of eigenvalues, this condition re- 
quires that a single chain be associated with each dis- 
tinct eigenvalue of ,F&. 

occur in conjugate pairs. 
C. pm=pI;I if and only if the eigenvalues of R are real or 

Mn 

D. p=pl if and only if the eigenvalues of are real or 
occur in conjugate pairs, and chains of equal length are 
associated with conjugate pairs of eigenvalues. 

E. p'=& if and only if R is semisimple. 

F. pl=n if and only if a single chain is associated with 
Am 

each distinct eigenvalue of $ 

Derivable from D and E, and from E and F, respectively, 

G .  p=& if and only if the eigenvalues of &.are real or 
occur in conjugate pairs, and 5 is semisimple. 
pi=n if and only if the n eigenvalues of gare distinct. H. 

It follows from the above results that, if the eigenvalues 
of R are real or occur in conjugate pairs, 

m 
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The condition on the eigenvalues of E, therefore, is sufficient 
to ensure that there will be at least n linearly independent solu- 
tions 
values 
it is 
fewer 

to Eq. (96). There will also then be p' repeated zero eigen- 

irteresting to observe that &($,-$) will have not only 
than n2 linearly independent eigenvectors, but in particular 

A (%?,-ET). But if Ft, and thus A(R?,-E; F ) , is not semisimple, 

fewer than pr;l associated with the zero eigenvalue. It is charac- 
teristic of the class of results we have obtained that a property 
that depends on the eigenvalues and structure of a matrix depends 
only on the structure of the zero-eigenvalue eigensubspace of a 
properly formulated Kronecker sum. This will be illustrated more 
adequately as we proceed, after we introduce a slightly different 
Kronecker sum than the one we have been considering. We shall 
then find that the similarity requirement on 
existence of appropriate nonsingular metrics, which is equivalent 
to conditions on the eigenvalues and structure of R ,  can be in 
like manner relaxed. 

and $ for the 

luu. 

Reformulation of the Theory 

We have obtained explicit expressions for the number of lin- 
early independent metrics appropriate to a system operator g ,  under 
various conditions on the operator, by an approach based on the 
Kronecker theory. We have expressed the results in terms of the 
parameters p, pm,p', and p;, which are well defined in terms of 
the eigenvalues and structure of E. 
tions among these parameters that are equivalent to the conditions 
on the eigenvalues and structure of R, including the conditions 
under which the metrics can be chose? nonsingular. These results 
indicate a dependence of such interior properties of 3, and the 
character as well as the number of its appropriate metrics, on 
conditions on p ,  pm, p', and &. We have in effect reformulated 
our theoretical results in terms of conditions on these parameters, 
but the parameters are defined in terms of the interior properties 
of &. 
terms of the structure of the zero-eigenvalue eigensubspace of 
A(Rf,-ST). 
F,-in terms of simpler matrix properties. 

In attempting to characterize & and its appropriate metrics 
in terms of properties of &($,-RT), we encounter the difficulty 
that, while the parameters p and-&, are descriptive of simple pro- 
perties of ll(R?,-&T), p' and pk are values assumed by these para- 
meters under conditions on E. We are able to bypass this diffi- 
culty, however, for we can show that p' and p& are also descrip- 
tive of simple properties of a different Kronecker sum formed 
from E. In fact, exactly as p and Pm are defined in terms of the 
structure of the zero-eigenvalue eigensubspace of a(&?, -LT) , p' 
and p; are defined in terms of the structure of the zero-eigenvalue 

We have also established rela- 

The unprimed parameters, however, are also well defined in 

We would like a comparable interpretation of p' and 
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eigensubspace of A (R, -R) . - -  rwl 

Thus A (R,-R) will have 
MInm IWI 

repeated zero eigenvalues, where the summation is over all values 
of T, regardless of the character of the eigenvalues of .F& 
number of independent eigenvectors of A(R,-R) with zero eigenvalue 
is 

The 
nMNH RM 

where again the summation is over all r. The upper bounds on the 
dimensionalities of the zero-eigenvalue eigensubspace and the null 
space of A (Rt,-$'), then, are respectively the dimensionalities 
of the zero-eigenvalue eigensubspace and the null space of A ( R , - R ) .  

A N I N V I  

M n m  

terms : 
We are thus able to restate the theory in the following 

The number of linearly independent metrics approprTate 
to a system operator 5 is given by the dimensionality 
of the null space of A(&t,-RT), which is not greater 
than the dimensionalilfy 
A(R.,-$). If the zero-eigenvalue eigensubspaces of 
T ( R t - R T )  and A(R,-€l) , which contain the null spaces, 
are 0% equal dimensionality, there will be at least 
n independent metrics. These can be chosen nonsin- 
gular if and only if the null spaces are also of equal 
dimensionality. 

(2nr of the null space of 

AII- 

By C and D, under "Structure of the Zero-Eigenvalue Eigen- 
subspace of &(E?,-RT)'' in Section 111, only if the zero-eigenvalue 
eigensubspaces are-of equal dimensionality can the null spaces be 
of equal dimensionality. The former condition is necessary and 
the latter is necessary and sufficient to ensure that the metrics 
can be chosen nonsingular. 

We have also the following corollaries: 

3 5  

I 



1. If the zero-eigenvalueeigensubspaces of A(gt,-gT) and 
A(R,-€t) are of equal dimensionality, and the null space 
of A(E,-E) is of dimensionality n, then the null space 
of A(gT,-RT) will also be of dimensionality n, and the 
n linearly independent metrics can be chosen nonsingular. 

If the zero-eigenvalue eigensubspaces of &(Et, -3T) and 
m A(g,-RJ are of equal dimensionality n, then the null 
spaces will also be of dimensionality n, and the n lin- 
early independent metrics can be chosen nonsingular. 

2. 

Moreover, by C, E, and H: 

If the zero-eigenvalue eigensubspaces of 
A($,-€$ are of equal dimensionality, and the null space 
of &($,-E) is of this same dimensionality, then the null 
space of &(@',-ET) will also be of this dimensionality, 
and the metrics can be chosen nonsingular. 

,-gT) and 

The condition given in Section II for the existence of non- 
singular metrics appropriate to €&was that 
matrices,which required that the eigenvalues and structure of 3 
satisfy certain conditions. We have replaced these by the condi- 
tion that the null spaces of and lJ.(R,-$) be of the same 
dimensionality (p=p'). This condition can be expressed also in 
terms of the rank r=n2-p of A (Rt,-RT) and the rank r'=n2-p1 of 
A(R,-R), and is that 

and s? be similar 

W N k  * 
N u 1 m  m 

r = r' (106) 

T or that A(R1-R ) and A(R,-R) have the same rank. 
WIUI  AM m 

It is well known that two matrics have the same rank if and 
(By definition, & and %are equiva- on ly  if they are equivalent. 

lent if there exist nonsingular matrices and g such that&=$gQ-.) 
Thus at the sacrifice of an increase in the order of the matrices, 
we have replaced the requirement that Land gT be similar (which 
requires that Q=Z-1) with the weaker requirement that A (Rt ,-ET) 
and A (R, -R) be-equivalent. W A -  

nu -  r(M 

We shall encounter, in the test for semisimplicity described 
below, another example of an interior, structural property of 5 
that can be expressed as the equivalence of two Kronecker sums. 

Testing the Kronecker Sum 

These results provide a basis for testing an operator to 
obtain information about its appropriate metrics - and indeed about 
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the eigenvalues and structure of any matrix, apart from our inter- 
est in the conservation laws governing a system it might describe 
- by determining or comparing the dimensionalities of the null 
spaces and zero-eigenvalue eigensubspaces of appropriate Kronecker 
sums. 

Test I: test for suitability of eigenvalues of &.- By C, 
in Section 111, under "Structure of the Zero-Eigenvalue Eigen- 
subspace of J4(&t,-@) , I 1  the eigenvalues of are real or occur 
in complex-conjugate pairs if and only if pm=prh. These parameters 
could be determined as in Test IV below, and compared. We indi- 
cate this approach only for consistency, as a formal alternative 
to the much simpler test described in Section I1 under "Testing 
the Operator." That preliminary test, which requires only writing 
out the characteristic polynomial of .&, is clearly indicated in 
any test procedure. 

Test 11: determination of the number p of linearly indepen- 
dent metrics appropriate to &.- Since p is also the dimensional- 
ity of the null space of it can be found from the rank 
r of AJzt,-$T), for r=n2-p. 
other ways, by a sequence of elementary transformations defined 
by the following operations: 

The rank r can be determined, among 

1. The interchange of two rows (columns). 

2. The multiplication of all elements in a row (column) 
by a nonzero scalar. 

3. The addition, to all elements of a row (column), of the 
corresponding elements of another row (column) multi- 
plied by a scalar. 

By a systematic application of these elementary transformations, 
any matrix can be put in its normal form, 

where & is the rxr identity matrix (ref. 5 ) .  We obtain p, then, 
from the order of Ar. 

of.&.- By D, the eigenvalues of z a r e  real or occur in conjugate 
pairs, and chains of equal length are associated with conjugate 
pairs of eigenvalues, if and only if p=pl - that is, and 
A ( R  -R) are equivalent matrices, having the same rank. The ranks 
Am Ad m of these matrices can be determined, and compared, by putting each 

Test 111: test for suitability of eigenvalues and structure 
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in its normal form. Unlike putting g-BLand their Smith 

nomials and the determination of greatest common polynomial divi- 
sors. Furthermore, it is a property of equivalent matrices that 
one can be obtained from the other by elementary transformations, 
which permits a comparison without reducing each to its normal 
form. 

normal forms, this does not involve the manipu !L ation of poly- 

Test IV: test for semisimplicity - of3.- By E, R is semi- 
Since &, is the number o? repeated simple- only if p'=p&. 

zero-eigenvalues of A(&,-$), in principle 
by finding the term of lowest degree in the characteristic poly- 
nomial of &(&-%) for which the coefficient does not vanish. Thus, 
a measure of the number of repeated eigenvalues of determined 
conventionally by finding the roots of the characteristic poly- 
nomial, can be obtained merely by inspection of the characteristic 
polynomial of &(%,-a. But while not requiring the solution of 
an algebraic equation, writing out the characteristic polynomial 
(or even determining a sufficient number of the polynomial co- 
efficients to apply this test) involves considerable, if straight- 
forward, calculation for a matrix of high order. Compared with 
the tests we are describing on n2xn2 matrices, it is relatively 
simple to do for an nxn matrix, and is therefore indicated above 
in the first of these tests. But rather than write out the char- 
acteristic polynomial for an n2xn2 matrix, we can avail ourselves 
of a more expeditious procedure to test &for semisimplicity. 

with zero eigenvalue by ~'(12). rw\ 

dependent eigenvectors and eneralized ei envectors with zero 

p& could be determined 

Denote the number p' of independent eigenvectors of A(%,-$) 
In all there are pr;l linearyy in- 

eigenvalue, in chains x(it1Y, x(1,2), . . .x 7 11gi) such that 
nm M I  mn 

From the first two of these equations, we see that 
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(ir2) are eigenvectors of [A (R,-R)l2 with Thus the & and 5 
zero eigenvalue. mnm mA 

2 2 There are then p' (A) independent eigenvectors of [ll(E,-R)] 
with zero eigenvalue, consisting of the eigenvectors and generyl- 
ized eigenvectors of rank 2, with zero eigenvalue, of &(&,-s). Tf 
the chains are not all of length 1, p'(A)<p' (A2). 
there are p' (h3) independent eigenvectors of [h(R,,-g) 3 3 with zero 
eigenvalue, consisting of the eigenvectors and generalized eigen- 
vectors up to rank 3 ,  with zero eigenvalue, of A(R, -&) ;  and if 
the chains are not all of length less than 3 ,  p' (c)<p' (L3). 
Finally, if Rm if the length of the longest chain associated with 
the zero eigenvalue of .A(R,-R) , then the null space of [k(€&-$$,) IRm, 
and of all higher powers 0"f   it') consists of the entire p& - 
dimensional zero-eigenvalue eigensubspace of A ( R , - R ) .  We there- 
fore have 

Similarly, 

IIMW nM 

Qm+ 1 
1 = p; ( 1 0 7 )  

2 'm nSp'(A) <p'(A ) < . . .<  p'(A M 4  ) = p'(A imn 
m )M 

q or denoting the rank of [A(R,-R) 1' by r' (fl , WnM Mn m 

( 1 0 8 )  
9 2 q since r' (k ) = n - p' (& ) .  

follows that R- is semisimple if and only if L(R,-RJ-and [&(g,-R,! 1 
are equivalent, having the same rank. 
can be compared as described in the previous test. 

2 
2 

The ran& of these matrices 

Since by Eq. (107) p' (i)=pk requires that p' (A)=p' ( k ) ,  it 

The value of p; could be found by determining the rank of 
the smallest power of lI(k,-g) having the same rank as the next 
higher power. (Similarly, h=n2-r (AQm) could be found by deter- 
mining the rank r(LQm) of the smallest power of A(gt,-$T) having 
the same rank as the next higher power: but, if Q,=l, it does not 
follow that R is semisimple.) 

Pnn 

Test V: test for multiplicity of chains associated with 
distinct ~~ eigenvalues of 8.- By F, there will be a single chain 
associated with each distinct eigenvalue of & if and only if p'=n. 
As described in Test 11, p'=n2-r1 can be determined from the rank 
r' of A($-&). 
eigenvalues of R are distinct if and only if &=n, and thus by 

Test VI: test for distinct eigenvalues of &.- By H, the 
w 
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2 Eqs. (107) and (1081, if and only if [ A  (R,-R)12 is of rank n -n. 
nmw lllvr 

These tests can be applied independently, each assuming no 
special conditions on &that must be determined by another test. 
But as we would expect from the theory on which these tests are 
based, results of some tests can in certain instances be combined 
to infer the results of others. If, for example, it is found by 
Test I that the eigenvalues of h a r e  real or occur in conjugate 
pairs, then Eq. (103) is valid. If it is further determined, 
either by Test V that p'=n, or by Test VI that &=n, it follows 
that p=p'=n. Then without having determined p directly, we know 
that there are n independent metrics appropriate to E, and with- 
ouk Test I11 that these can be chosen nonsingular. Or if by Tests 
I and IV it is determined that the eigenvalues of $are real or 
occur in conjugate pairs, and &is semisimple, then by E and G, 
p=p'=&>n; and again it is not necessary to apply Test I11 in 
order to conclude that the metrics can be chosen nonsingular. 

Lumped Systems 

The theory concerning the metrics appropriate to a lumped 
system can be reformulated along the same lines that we have dis- 
cussed in detail for the uniform distributed system. Using the 
technique described in Section I11 under "The EquatisnM%+sgT=E," 
we can write Eq. (36), the condition for a metric K to be approp- 
riate to a lumped-system operator M, in the form m 

m 

(109) T -1 
A ( M ' , - ( M  ) ) k" = 0 
"4 fvm Mn nhl\ 

The relations among the properties of k(E?,-(M- -l) and JJM,-&), 
the eigenvalues and structure of E, and the number and character 
of the nontrivial solutions to Eq. ( l o g ) ,  are then in complete 
parallel with those among the properties of ll(Rf,-ET) and A (%,-$), 
the eigenvalues and structure of €?, and the number and chayacter 
of the nontrivial solutions to Eq. (96) - where again p and p' 
are the dimensionalities of the null spaces, and Pm and pi of the 
zero-eigenvalue eigensubspaces, of A (Mf' , -l) and AJK, -MJ res- 
pectively. It is only necessary to substitute everywhere, for the 
conditions given by Eqs. (12) and (13) on the eigenvalues of L, 
the conditions of Eqs. (37) and (38) on the eigenvalues of M. 

I Y H M  

M 

Alternatively, we could first obtain an equivalent & for the 
given Ivl, as discussed under "Lumped Systems" in Section 11, and 
reduce the problem to the form we discussed in detail. 

We have thus far been occupied with a parallel treatment of 
the operators &.and g, or g ( z , z i ) ,  for constant E, in terms of 
equivalent conditions on their eigenvalues and structure, translated 
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into identical conditions on certain Kronecker sums, and with 
reference to the same set of constant metrics. We shall extend 
this parallel through the following section. Later we shall 
exploit some dissimilar properties of &and g ( z , z l ) ,  and intro- 
duce other metrics whose dependence on the operators does not 
exhibit such simple parallels. 

I V .  THE CONVERSE PROBLEM 

Distributed Systems 

In the previous sections we addressed ourselves to the prob- 
lem of what can be said about the metrics appropriate to a system 
operator, for distributed systems of a restricted class, and those 
appropriate to a lumped-system operator. Some attention has also 
been given to the converse problem, for uniform distributed systems, 
of how an operator is determined by its appropriate metrics (ref.1). 
A theoretical treatment of this problem is of interest in that it 
permits the synthesis of systems governed by specified conserva- 
tion laws, and more basically in that it points to the significance 
of the conservation laws in defining a system. A critical look 
at the published results will show that they are only partly satis- 
factory in providing such an alternative approach to system defini- 
tion. (See also Section VII.) 

Given any two independent, nonsingular, Hermitian, constant 
metrics & and $ 2 ,  the range of operators €& for which 61 and H2 
are appropriate metrics can be determined. 
ate to 5, by E q .  (8) it is necessary and sufficient that 51% be 
Hermetian - i.e., that 

For 51 to be appropri- 

where g is any Hermitian matrix. Thus 

-1 R = K  H 
M A  A m 1  Nv( 

gives the range of &having H1 as an appropriate metric. 
to be appropriate also, it is necessary and sufficient that 

For $2 

R'K = K R m n 2  m 2 m  

where &is in the range given by Eq. (110). On substitution of 
Eq. (110), this relation can be put in the form 
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t. J H = H J  
om” M m r  

where J is defined by 
m 

J = K - ~ K  
AM NnlL112 

Equation (111) places a further restriction on E. Thus any opera- 
tor & of the form of Eq. (1101, where is an Hermitian solution 
to Eq. (1111, will have both El and i2 as appropriate metrics. 

Equation (110) defines a class of systems with operators 
having as an appropriate metric, such that s(&1) is an invari- 

fines a class of systems for whicr ~($2) i s  invariant. The class 
of systems for which both ~($1) and ~($2) are invariant can be 
defined as the intersection of these two classes. 

ant. Similarly, = $5 1 2 ,  where H is any Hermetian matrix, de- 

The extent of this intersection, of the range of &, will de- 
pend on the choice of21 and &, for these may imply other indepen- 
dent metrics that must be appropriate to any 5 in this range. It 
is easy to verify that if 21 and22 are appropriate to 3, then 
every metric of the set 

m-1 K = K J , m=1, 2, ... mm ~ 1 -  

is also appropriate. For by Eqs. (110) to (113), 

Since every matrix satisfies its characteristic equation, the nxn 
matrices gm-l, for m>n, must be linear combinations of the 
m=1, 2 ,..., n. Thus at most Kl,K2 ,..., K, (and at least K1,K2fmiiil 
be linearly independent. The more in2ependent metricsmimTlied by 
a specified21 and,K2, the more restricted will be the class of 
systems that can be designed that will be governed by the conserva- 
tion laws ds ($l)/dz = 0 and ds (K2)/dz = 0. m 
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Specifying additional metrics, other than those implied, 
will further restrict the class of systems - ultimately to €&=I, 
for which all metrics are appropriate. 
a system is said to be defined by its appropriate metrics.* 

It is in this sense trat 

Let us, however, look at these results in a little more de- 
tail. Let us first ascertain the minimum range of & for specified 
K1 and 2 2 .  With & defined by Eq. ( 1 1 2 ) ,  and recalling the assump- 
tions on El and s2, it is easily checked that am 

H = K  
(\ur =,K1 m nM2 

are independent, nonsingular solutions to Eq. (111). But Eq.(lll) 
is of the form of Eq. (8), and we saw in Section I1 that if an 
equation of this form has one nonsingular solution, it has at 
least n independent solutions, which can be chosen Hermitian.Thus, 
by Eq. (110) there will be at least n independent operators & 
having $1 and $2 as appropriate metrics - regardless of the number 
of additional independent metrics $l$m-l, m=3, 4,. . . , that are 
implied by z1 and z2, and that restrict the range of &. 

to the degeneracy in 2. 
ent subscripts are used to index repeated eigenvalues of $ when 
these are associated with independent eigenvectors or separate 
chains, and if Rr is the length of the chain with eigenvalue Qrr 
the characteristic equation of J can be written 

The number of independent metrics sic-' is inversely related 
In the notation of Section 111, if differ- 

IW 

and is of degree T-I. However, this may not be the polynomial equa- 
tion of lowest degree that J satisfies. The latter will be of the 
form (yk 

- 
where the qr are distinct, and max Rr, r-r, is the length of the 
longest chain with eigenvalue nr = UT. The polynomial on the left 

.. e -  
The properties of an operator on a wave basis having an approp- 
riate metric of canonical form for pairwise coupling have also 
been arrived at by an approach beginning with the specification of 
the metric (see ref. 10). 
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in Eq. (116) is known as the minimum polynomial o f A ,  and is of 
degree not exceeding n. The less degeneracy in 6,  the larger 
will be the degree of the minimum polynomial, and thus the greater 
the number of linearly independent metrics BIJ,”-l. 

the less degeneracy in 3, the fewer linearly independent solutions 
%there will be to E q .  
of &. 
stricted by the specification of metrics &1 and a2 that imply addi- 
tional metrics. 
semisimple with distinct eigenvalues, or when only one chain is 
associated with each distinct eigenvalue. The minimum polynomial 
will then be the same as the characteristic polynomial, and there 
will be n independent metrics in the setglP-1. 
seen that under this condition, and only then, will there be only 
n independent solutions to Eq. (ill), and thus a minimum n-dimen- 
sional range for R. 

But applying the results of Sections I1 and 111, we see that 

(1111, and the smaller will be the range 
This explains the mechanism by which the range of a is re- 

The degeneracy in $ will be minimum when $ is 

But we have 

twl 

We also note that 

are operators in the range of R. For 
w 

k-1 ... = K J -1 - - - 

k-1 ... = K J - - 
w2 HI 

and so I& andz2 are appropriate to each sk. 
dentsk. But the range of 5 is then only n-dimensional, and so 
there are no more independent operators in this range. Further- 
more, there will then be n independent metrics K =K Jm-1, m=1,2, ..., n 

If the degeneracy in is minimum, there will be n indepen- 

lurm 4- 
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which are all appropriate to each of the R k=l, 2, ..., n. wk' 
We cannot in general further restrict the range of E selec- 

tively by the specification of additional metrics, such as to de- 
fine each independent &in this range uniquely in terms of its 
appropriate metrics. 
Since the degeneracy in is minimum, ,R2=& will have exactly n 
independent, appropriate metrics; i.e., only the ,Km that we have 
already determined. Further degeneracy may or may not appear in 
successive powers ofi. For example, if ,&=A is semisimple with 
distinct eigenvalues nr, then,Rk'&k-l, k=3, 4 ,  ..., will be semi- 
simple with eigenvalues q $ - l .  Clearly the rl5-1, for any k>2, may 
or may not be distinct (e.g., if q l = l ,  n2=-l, then nf=n2=1; but a 
situation of this kind is not representative). 
powers of &do not become more degenerate, the,&,, m=1,2, ..., n, 
will be a maximal set of independent metrics appropriate to each 
of the independent operators &, k=2,3, ..., n. (It is easily 
verified that another independent operator can be included, making 
a total of n, by adding &to any one of the ,Rk, k=2,3, ..., n.) 

be greater than n-dimensional. There will still be q independent 
operators in this range of the form gk=Lk-l, k=1,2, ...,q 
where q is the degree of the minimum polynomial of A; and the q 
independent metrics I&=ElJ,"-', m=1,2, ...,q, will be appropriate 
to each of these operators. 
minimum, the total number of independent metrics appropriate to 
R2=2 will, however, be greater than n. But letzi be a metric, 
appropriate to g2, that is independent of thezm, m=1,2, ...,q. 
Then 

Any metric will be appropriate to &=A. 

If succgssive 

If the degeneracy in 2 is not minimum, the range of &will 
(25q<n), 

Since the degeneracy in 2 is not 

Ny 

Postmultiplying both sides by L, and making use of E q .  
the result, we obtain 

(118) in 

and, accordingly, I$ is appropriate also to ,R3=L2. By extension, 
gi, and thus all of the metrics appropriate to & ? ,  are appropriate 
to eaCh.gk, k=1,2, ...,q. Again, further degeneracy may or may not 
appear in successive powers of g. (Consider, for example, a semi- 
simple 2 with repeated eigenvalues. 
raised to a given power will normally, but not necessarily, be dis- 
tinct.) 
the independent operators &, k=2,3, ...,q, (and M R2+A) will have 
the same set of appropriate metrics. 

The distinct eigenvalues 

If successive powers of & do not become more degenerate, 
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We can easily construct examples also of nonsemisimple 2, 
for which the degeneracy does not increase in powers of 6 .  
if the degeneracy in & is not minimum, we can often find a set 
of operators in the range of $ that are independent of the $k, 
k=1,2, ...,q, and which also have a common set of appropriate 
metrics. In fact, with substituted for 3, Eq. (119) follows 
from Eq. (118) for any H in the range; and while the degree of 
degeneracy in such an 
pendent powers of & having the same degree of degeneracy will 
have the same appropriate metrics. 

And 

need not be the same as that in 2 ,  inde- 

We have indicated how the degeneracy in 2 determines both 
the range of & and the number of metrics implied by21 ands2, 
and gives some measure of the extent to which this range can be 
subdivided by the specification of additional metrics. We have 
found that specifying a set of nonsingular metrics, and stipula- 
ting that it be maximal, still in general determines R only with- 
in a range. rwr 

Furthermore, this approach to system definition, at least in 
the form given, lacks generality. The procedure does not apply 
to a specified set of metrics that cannot be chosen nonsingular 
in linear combination, but which also define a range of operators. 
And there is a range of uniform systems that do not obey any con- 
servation law. Specifying the constant & appropriate to a non- 
uniform-system operator would in general be even less useful for 
discriminating among systems. (It does not follow from the exis- 
tence of one constant, nonsingular solution to Eq. ( 8 ) ,  or Eq.(36) 
f o r 2  a matricant, that there need be more, if I& is not constant 
- but we shall see in Section V that the specification of z-de- 
pendent solutions to the latter equation will lead to a different 
interpretation of the conservation laws governing a range of sys- 
tems determined by a variation of this procedure.) The results 
of this section suggest that the constant H might play a role in 
a more general, exact scheme for system definition; but clearly 
something more must be incorporated in this scheme. What this 
must be, and its physical interpretation, will become clearer as 
we proceed, and the question will be resolved finally in Section 
VII. 

Lumped Systems 

We next ask how the range of lumped-system operators having 
specified appropriate metrics can be determined. 

A set of constant 5 defines a range of constant&, and there- 
by a range of matricants as solutions to Eqs. (39) and (41) for R 
in this range. 
Unitary with respect to every K in this set is given by the range 
of matricants evaluated at z 1  '2 0 and any z = L. 

m A range of lumped-system operators J&that are E- 
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The metrics of Eqs. ( 5 )  and (71), for example, define con- 
stant R in the range 

w 

where al and a2 are real constants. 
R in this range is given by 

The range of matricants for 
nn 

Evaluated at z = L # 0, with al = 2nn/L and a2 = b/L (n=any in- 
teger), this is the operator $$, of E q .  (69) for a lumped shunt 
susceptance jb, and for which we found the specified metrics were 
appropriate. More generally & describes a lossless system at 
the edge of a pass band - reclprocal and symmetrical if 
e-~alL = - + 1. 

It is interesting to note, as in this example, that certain 
metrics may define distributed systems that do not appear to be 
of physical interest, but which in turn give rise to lumped 
systems of interest. 

For a given &, ~ ( L , O )  depends on the choice of L. Further- 
more, E-Unitary 2 can be obtained as the matricant, evaluated 
at z = L, of 3 outside this range, including z ( z ) ,  and can des- 
cribe a variety of physical systems. 

The significant point, however, is that for any choice of 
z = L # 0, the technique described gives the complete range of 
nonsingular g, for which the specified 5 are appropriate. 
given any E in this range -- which could describe a section of 
a nonuniform distributed system, a network of lumped elements, 
or an arbitrary transformation -- M, has an equivalent representa- 
tion as a section, of length L, of a uniform system described by 
an operator 8 for which these metrics are appropriate. 
operator will therefore be in the range of constant B defined 
by the specified metrics, and g will be its matricant evaluated 
at z = L. 

For 

This 

Even for a given choice of z = L, there will not be a one- 
to-one correspondence between M and R in their respective ranges. 
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As indicated in Section 11 under "Lumped Systems," and as may 
be seen in the above example, there are still an infinite number 
of choices for R in its range from which we can obtain a given$. 

L, is determined by the range of constant defined by the speci- 
fied metrics. Lumped systems can therefore be treated by the 
techniques developed for uniform distributed systems. The rela- 
tion between operators for lumped and uniform distributed systems 
will be indicated more formally in Section VII, and it is parti- 
cularly appropriate that they can be so related. 
further delimit the range of &, in a manner to be discussed, we 
will in general further restrict the range of E; but unless this 
is done by specifying additional constants, we shall not be 
distinguishing between operators in this range on the basis of 
what can be interpreted strictly as conservation laws. We shall 
find that this is a feature of uniform systems in particular. 

Pm 

But the ranqe of%, which is independent of the choice of 

For if we 

V. NONUNIFORM SYSTEMS 

In this section we generalize some of the previous results 
to nonuniform systems, and we introduce some metrics that we 
allow to vary with z in a manner appropriate to the conservation 
laws governing such systems. We consider two ways in which this 
can be done, each proceeding from a different interpretation of 
the conservation laws and providing different insights into the 
more general problem, but either providing a basis for analysis 
or synthesis. By ascertaining what is required of a metric for 
it to determine a conservation law, we justify the assumption 
that these must be constant for uniform systems as a special case. 
But the z-dependent metrics introduced in this section will later 
have application in characterizing uniform systems as well. 

The condition for a quadratic form s ( g ) ,  5 constant, to be 
invariant under the operation B, was given in Section I1 to be 
that K satisfy 

m 

t R K = K R  
m *  M M  

This condition was derived without assuming constant, and 
accordingly it applies to both uniform and nonuniform systems. 
But the subsequent conditions on &, or on A ( R *  
A (&,-E), for the existence of constant (nonslngular or singular) 
solutions to E q .  ( 8 ) ,  the expressions for the number ofthese that 
will be linearly independent, and the procedures for obtaining 
constant solutions were arrived at on the assumption that $is 
constant. 

-RT) and 
m -.I * 

nn 
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If 5 is not constant, the same procedures can be used 
formally to obtain solutions to Eq. (8). The number of indepen- 
dent solutions will depend as before on the conjugacy properties 
of the eigenvalues of & the dimensionality of the eigensub- 
spaces, and their organlzation into chains of generalized eigen- 
vectors -- any or all of which, however, may depend on position. 
But if they do not, then on a Jordan basis they will determine 
a number p of independent, constant solutions to Eq. (19), 

where p has the same dependency as before on the eigenvalues and 
structure of -- although the eigenvalues, eigenvectors, and 
generalized eigenvectors are allowed to vary with z subject to 
the above constraints. Tf the eigenvectors and generalized 
eigenvectors, and thus the modal matrix &, are constant, the 
K '  can be transformed back to the same number p of independent, 
constant metrics K on the original basis by Eq. ( 2 4 ) .  In this 
case, all of the aeoretical results given for constant & apply 
(although, as we shall see, we must be somewhat more careful in 
interpreting the conservation laws). The theory developed thus 
far, then, applies to a somewhat broader class of operators 
than assumed. If the modal matrix is not constant, however, 
there is no guarantee that any or all of the 5' '  in any set of 
independent situations to Eq. ( 1 9 ) ,  will transform to constant K .  

m 

m 

There will still be the same number p of independent solu- 
tions to Eq. (8). But if & = E(z),  then apart from any question 
of s (&)  having the same interpretation for all z in terms of 
properties of the system, Eq. (8) no longer gives the condition 
on K for s ( K )  to be invariant. Equation (7) then becomes 

rWI (w, 

and the condition for s ( K )  to be invariant is more generally 
Iw 

t ds5. R K - K R  = j - 
nMm m(*r. dz 

For constant K ,  Eq. ( 1 2 2 )  reduces to Eq. ( 8 ) .  
m 
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If s (K) is invariant, and K = K(z), then 
Nvr m n M  

where z 1  is any fixed value of z. By Eq. (42), the matricant 
M(z,zl) must then satisfy 
m 

Equations (122) and (124) are equivalent, and one can be obtained 
from the other with the use of Eqs. (39) and (41). 

Equation (122) is of the same form as Eq. (92), with = 
j(dE/dz) chosen as the derivative of the unknown 2 instead of as 
a constant matrix. The derivation of Eq. (94) from Eq. (92) is 
not affected if L i s  of this form, and accordingly Eq. (122) can 
be written 

A (Ri , -RT)  k" = j dz 
WnAn I\" 

This is a differential equation in the form of Eq. (l), where in 
this case the operator A-(Et-zT) is a Kronecker sum, and A'' is an 
n2-dimensional state vector formed from the elements of & in the 
manner described in Section 111. We shall find in Section VI1 
that%' is a state vector of the system in not only a formal, but 
a very real sense. If $.satisfies the Lipschitz condition, 
A(R~,-RT) will also; for its elements are simply elements of -&, 
conjug?tes of elements of E, or sums of these. 
that ensures the existence of a matricant, then, ensures the 
existence of n2 independent solutions to Eq. (125). The results 
of Section I11 give, for €?-constant, the number p of independent 
solutions that can be chosen constant. 

nMm The same condition 

Thus it is only necessary that$ satisfy the Lipschitz con- 
dition for there to exist n2 independent, invariant forms s(&). 
Let us look more carefully, for the general case where & is not 
restricted to be a constant operator, at the conditions for such 
forms to represent invariant properties of the system. A system 
is defined by the elements rij of its operator A, and the vari- 
ables chosen as components of the state vector &. A consistent 
definition of what we mean by any property of the system requires 
that it depend in the same way on the rij and the components of 
x everywhere in the system - that is, that it does not depend 
explicitly on z .  Thus it is reasonable to interpret an invariant 
form s ( 5 )  as a conservation law, although ,&is a function of z ,  
if &can be written as an explicit function of the rij(z) only: 

lvlh 
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K = K(r (z)) 
Mn ij 

Constant& are a special case of Eq. (126), for both uniform 
and nonuniform systems. If the rij are constant, then conversely 
&must be constant to be of this form. Thus we are justified in 
having restricted our attention to constant 5 in considering the 
conservation laws governing a uniform system. But for a nonuni- 
form system, any solution &(z) to Eq. (122) will meet this require- 
ment if, on substitution of z expressed in terms of any of the rij 
by inverting rij = rij ( 2 )  , &(rij) 

solutions to Eq. (122) are not likely to be identifiable as famil- 
iar invariants such as the power or the energy. But there is no 
guarantee either that the p independent invariants we have been 
considering for uniform systems will have simple physical inter- 
pretations, and E q .  (126) is the logical extension of constant & 
to nonuniform systems. Furthermore, if the system is nonuniform, 
it is only by an examination of this larger class of metrics that 
we can be sure we have identified all the invariants of clear 
physical interest. (See example in the following section.) 

is single valued. 

All s(&)  = f(xi,rij) derived in this manner from z-dependent 

Although, for constant &, an invariant form s ( k )  always re- 
presents an invariant property of the system, by the same token 
we must be careful in interpreting this property if the system is 
nonuniform. Suppose, for example, that the system includes a 
capacitance that varies in some manner C = Cog(z), g(0) = 1, and 
it is determined that(1/2)CoIV12 is invariant, where V is the volt- 
age. If the system were uniform, g(z) constant, we could conclude 
that the stored electric energy is conserved; but in general we 
can only say that 1Vl2 is invariant. (The conservation of elec- 
tric energy - the invariance of s(&) =(1/2)CIVI2, where then5 = 
K(z) - would have to be indicated by a z-dependent solution to 
Eq. (122).) On the other hand, an invariant form(l/2)Re VI* implies 
power conservation in any case, for the expression for the power 
does not depend on z-dependent parameters of the system. 

M 

By introducing a still different set of K(z), we can parallel 
for nonuniform systems the technique discusse3 in Section IV for 
determining the range of operators with specified appropriate 
metrics. But first let us point out that the results given there 
are not all restricted to uniform systems. If constant and22 
are specified, it is not in fact necessary to choose solutions g 
to Eq. (111) to be constant. The arbitrary constants in the gen- 
eral Hermitian solution can as well be arbitrary functions of z. 
This leads by Eq. (110) to the complete range of systems, uniform 
and nonuniform, with operator F& having constant 21 and ,K2 as 
appropriate metrics. It is not necessary that there be any more 
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independent, constant metrics appropriate to an &in this range, 
however, if L i s  not constant - unless there are more in the set 
K Jm-l implied by El and E2. *l nml 

More generally, if the conjugacy properties of E(z,z~), the 
dimensionality of the eigensubspaces, and their organization into 
chains of generalized eigenvectors do not depend on z (except at 
discrete values) there will be p linearly independent solutions 
to the equation 

where p depends on the degeneracy ing(z,zl) exactly as was deter- 
mined for uniform systems. Note that for any lossless, nonuni- 
form system, with at least the one invariant s(E), K constant, re- 
presenting the power, there must by our earlier res??Lts be at 
least n independent, nonsingular solutions to Eq. (127 )  - for there 
exists an appropriate nonsingular K at every value of z .  

m 

Equation ( 1 2 7 )  implies that 

For a given z ,  KJz) can be considered a constant metric. The "(E) 
formed from solutions to Eq. ( 1 2 7 )  will then represent properties 
of the system that are invariant when transformed from z l  to z ,  
but the invariant properties will in general depend on z .  But 
this suggests that we can define a nonuniform system in terms of 
its z-dependent invariant properties in a manner parallel to the 
way in which we defined a uniform system in terms of its z-indepen- 
dent invariant properties. 

Given two independent, nonsingular, Hermetian metrics .KK(z) 
and 2 2  ( 2 )  , we can consider an . M ( z , z l )  for which these are appro- 
priate as represented by an equivalent uniform line from zl to z .  
The system operator for this uniform line can be denoted by R o ( z ) ,  
with z as a parameter. Defining Nr, 

we obtain the Hermitian solutions to 
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Since H = &l,J& are nonsingular solutions to Eq. ( 1 3 0 1 ,  there must 
be at yeast n independent solutions. There may not be the same num- 
ber at every value of z ,  and the H ( z )  may be otherwise not well be- 
haved, if the conjugacy properties of the eigenvalues or the de- 
generacy in changes with z. But we can always choose at least 
n independent solutions. We thus determine a range of ,wRo(z) by 

Since ZO(Z) is the operator for a uniform line, it is straight- 
forward to determine its matricant as the solution to the 
tion 

where ,Mo(z',zl) contains z as a parameter. Corresponding 
range of g o ( z )  is a range of ,Mo(z',zl) having c , K l ( z )  and & ( z )  as 
appropriate metrics, and in particular this is true at z' = z. 
Thus El(z) and & ( z )  are solutions to Eq. ( 1 2 7 )  , with 

equa- 

( 1 3 2 )  

to the 

and thebT(z,zl) are lumped representations for the range of sys- 
tems defined by these conservation laws. If the HJz) are suffi- 
ciently well behaved that the g ( z , z l )  are differentiable, then 
the latter are matricants from which a range of system operators 
can be determined by 

This approach to system definition, in terms of metrics de- 
fined by Eq. ( 1 2 7 ) ,  has the same limitations as the parallel 
approach for uniform systems. For this purpose, we shall find 
that the metrics defined by Eq. ( 1 2 2 )  are more significant. These 
are quite different definitions of KJz), for with &given by 
Eq. (1341, we find that solutions to Eq. ( 1 2 7 )  must satisfy 

r 1 

and so do not in general satisfy Eq. ( 1 2 2 ) .  Incidentally, Eq. 
(135) indicates that we cannot obtain or characterize the solutions 
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to Eq. (127) by a parallel treatment of W, as we could for uni- 
form systems. The solution of Eq. (135) for K- requires the deter- 
mination of &I, and Eq. (135) thus offers no real alternative to 
Eq. (127) in the study of nonuniform systems with this interpre- 
tation of the conservation laws. 

VI. USE OF DIRECT PRODUCT TO OBTAIN THE CONSERVATION LAWS 

The conservation laws governing a distributed, uniform or 
nonuniform system can be determined from another property of the 
Kronecker product and sum, if the matricant is known. Like the 
procedure described in Section 111, and unlike that of Section IT, 
this procedure does not require determining the eigenvalues, eigen- 
vectors, and generalized eigenvectors of . M ( z , z l ) ,  or of 5 obtained 
by Eq. (46). If only & is known, it is still sometimes easier to 
determine the matricant (e.g., by the method of projectors (ref.3), 
for &constant) than the eigenvalues and modal matrix. Tf 5 is 
not constant, but satisfies the Lipschitz condition, the matri- 
cant can be determined at least approximately (refs. 3 and 1l);and 
in either case this procedure offers a method of solution for 
Eq. ( 1 2 2 ) ,  providing additional information beyond that givenby the 
constant K. 

w 

It is well known that the direct product of the matricants 
MA(z,z~) and MB(z,z~) of two nxn operators 2 and 2 is the matri- 
cant of the K’l;%ecker sum A (A B )  . * o m  If, that is, 

a4 A“m 

d5 
dz --g lhrr 

-jBM ., M (z, ,z,)  = I 

then, writing ,MA(z,z 1 ) x --B M ( z , z , )  as EA x B I B ( z , z l ) ,  

It is easily verified that 
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. .. . . .. 

Writing J$ -SEE in the first term and &la=&E& in the second term, 

Lc h ( A  ,udal B), Eq. (137) follows directly. Since the eigenvalues of 
M XMB are products of the eigenvalues of 3~ and the eigenvalues 
5% gc, and ,MA and b f ~  are nonsingular,   MAX^^ is also nonsingular - 
as required 3 a macricant. The boundary condition follows from 
those in Eq. (136) and the definition of the direct product. 

and with E- he use of Eq. (82) and the definition, Eq. (84), of 

We found in Section V that Eq. (122) can be put in the form 
of Eq. (125), and that the same condition that ensures the exis- 
tence of a matricant for sensures the existence of n2 linearly 
independent solutions g' to Eq. (125). If any set of linearly 
independent solutions is arranged as the columns of an n2xn2 
matrix K" (z) , then 5'' (2) satisfies 

m 

By Eq. (137), Eq. (138) is satisfied by 

-1- where 5 ( z , z , )  is the matricant of 5 and ( z , z , )  is the 

matricaTt of -R . To relate M 

we take the transpose conjugat: of both sides of Eq. 

postmultiply by (Mt)-', to obtain 

-R T R 
to the matriTant M(z,zl) of R ,  

nm n*r wRt .AN-A 

(39) and 

rw  

-1 t t  f- (Mf-)-' = jM R (M ) dz n~ 8" Lm 

But 

since(d/dz)[M'(M')-l] = dI/dz = 
M A  0. Eq. (140) an2 p?emultiply?ng by - ( M f - ) - l ,  (IM we obtain 

Substituting Eq. (141) in 

-1 -1 
t f -  t 

d(J$, 1 
dz = -jg (M ) 
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t -1 Clearly, also, [E ( z , , ~ , ) ]  = I. Thus (Mt)-l is the matricant 
flu nm of F$ 

Similarly, we find that 

Thus 

A nonsingular solution to Eq. (138) is obtained from the 
matricant of & by Eq. (145). The columns of K" thus form a set 
of n2 linearly independent solutions &: to Eq? (125). 

ai are independent of z ,  is also a solution. An elementary trans- 
formation, as defined in Section I11 under "Testing the Kronecker 
Sum," on the columns of &", 
columns that are linear combinations of the columns of 5".  Further- 
more, it is a property of elementary transformations that they do 
not change the rank of a matrix. The columns of the new matrix, 
therefore, will also form a set of linearly independent solutions 
to Eq. (125). 

Any linear combinationxailc: of these solutions, where the 

will result in a new matrix with 

All constant solutions to Eq. (125) will be linear combina- 
tionsfof the columns of SI', obtained by taking the direct product 
of (M )-I and The constant solutions can be obtained by 
succ7ssive elementary transformations on the columns of E", with 
the assurance that after each step we will be left with a set of 
linearly independent solutions. A scalar multiplier employed in 
an elementary transformation must be chosen independent of z ,  and 
the functional forms of the elements of will serve as a guide 
in making elementary transformations that will display the constant 
k". If the required transformations are not evident, we can sys- 
tematically obtain as many constant elements as possible in the 
first row. The constant $'I must then be linear combinations of 
the columns headed by the constant elements, and by elementary 
transformations on these we can obtain as many constant elements 
as possible in the second row. Continuing in this way, we will 
obtain the largest set of linearly independent5" that can be 
chosen constant. 

fwl 
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The constant metrics & appropriate to & are obtained by re- 
arranging the elements of the constant&" as nxn matrices in 
accordance with the convention we have adopted. As the constant 
solutions to Eq. (122), they will be the constant solutions to 
Eq. (8). The remaining independent solutions B(z) to Eq. (122) 
are obtained similarly from the remaining & " ( z ) ,  and for nonuni- 
form systems these may imply additional conservation laws. Note 
that if (122), &t is also; and again the 
solutions can be chosen Hermetian. 

is a solution to Eq. 

Example 1: 

The operator E for a uniform transmission line, given by 
Eq. ( 3 ) ,  has the matricant 

cos Bz - j Z o  sin Bz 

MA 

1 sin ~z cos B Z  
z O  

By Eq. ( 1 4 5 ) ,  we obtain 

\ cos' UZ j $ s i n  6 2  cos ~ { z  -j 1 s i n  liz c o s  ~z 5 s i n '  B Z  / 0 2 0  2 0  
1 

0 
32, s i n  0 2  cos liz cos' p z  s i n '  ~ i z  -j s i n  6 z  cos Oz 

-12, s i n  1'2 cos  1'2 s i n 2  pz cos2  I'z j - s i n  Rz cos Rz 

K *' = 
1 

zO 

s i n '  iiz - 3 Z 0  s i n  6 2  cos f!z jZ, s i n  I z cos Pz cos' I32 

Writing the i'th column 

i 
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2 

If k.; and Jz are replaced res- 
we see that (1/4)(&:+$;) gives the elements of H1, and (1/4Z$$i+Zo$i) 
the elements of g2, in E q .  

pectively by (1/4)(&:+k.;) and (1/4Z&(kl+Z$ci) , the result of elemen- 
tary transformations, it is clear that we cannot then obtain 
another column with constant elements by replacing&; or &i by a 
linear combination a k"+a4&i, a3 and a4 constant. 

Example 2 :  

(60). 

3--3 

The operator 5 for an exponentially tapered transmission line 
is of the form 

(149) 

is the 0 2  - 0 2  where L=LOe is the inductance per unit length, C=COe 

capacitance per unit length, Zo = d m ,  and P = u @  = w dm. 
The matricant is 

M ( z , O )  = 
nn? 

b <1/&z(cos yz+ - 1 0  - sin yz 
2 Y  

e 

(150 )  

2 2  where y =B - a2. By Eq. (145) we obtain K", with the column 
vectors: w 
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(?)' eoz s i n 2  yz 

\ 

y z  + - - 2 Y  
B e-az 

/ 
-j - 

YZ0 

- B~ s i n 2  y z  

1 - 2  B~ s i n 2  y z  

2 Y 

Y 

"0 eaz s i n  y z  cos y \j Y ( l a  - _  
2 Y  

si= 

i n  y z  

y z  + 1 a s i n  y z  2 Y  

1 
B e-az 

1 -  
YZ0 

1 - - B 2  s i n 2  y z  
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Clearly (1/4) (&:+&:) gives the elements of 

and so the power is conserved (see Eq. (6)). Successive elementary 
transformations, using the systematic procedure we have described, 
reveal that there are no constant metrics independent of $1. 
if we substitute eaZ =(1/BZo)rl2 and e-OZ =(Zo/B)r21 where these 
appear explicitly, and in the same manner seek linear combinations 
of the &I that are not explicit functions of 5, we find that 
(B/Zo),kf + jak2 + BZokJ gives the elements of 

But 

m HA 

from which we can form the Hermetian solution to Eq. (122), 

= L(j  2 

C 

l a  
2 w  
- -  1:) L 

Equation (154) implies the invariance of 

(155) s(s2) = 2 t z2x,= 1 C I V ~  2 1  + - ~ 1 1 1 ~  + j - l a  - (v*I-vI*) 
2 4 w  

Thus the total stored energy plus a / w  times the imaginary part of 
the complex power is conserved. 

If I$ and &: are replaced respectively by (1/4) (&;+E:) and 
(B/Z&f + J O & ~  + PZo&;i, we are left with 
indeFendent conservation laws can be derived from these on sub- 
stituting z =(l/a)ln(rl2/BZg)or z = (l/o)ln(l3/Zor21) everywhere; 
but they do not have an obvious physical interpretation. 

and & a .  Two additional 
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VII. GROUP REPRESENTATION WITH THE SYSTEM INVARIANTS 

We observed in Section IV that the constant, nonsingular me- 
trics appropriate to a system operator define this operator only 
within a range. It is also known that the matricant has group 
properties, and the group representation it provides is not unique 
(refs. 3 and 7 ) .  Rather than considering, in the usual manner, 
group properties of the matricant as defined by appropriate, non- 
singular, constant&, we shall find that the constant 5, singular 
and nonsingular, are embodied explicitly in another group represen- 
tation. That they are neither necessary nor sufficient for such 
a representation, however, will indicate the extent of their con- 
tribution in defining a system. We shall see what is needed to 
complete the representation, and shall find that it has both phy- 
sical interest and some further group properties. 

A nonempty set S is said to be a ring under a Lie product 
if it is closed under defined binary operations of addition (+) 
and multiplication ( - ) ,  and provided, €or arbitrary elements si, 
s2 , s 3 E S :  

1. 

2 .  

3. 

4.  

5 .  

6 .  

7. 

(Sl+S2) + s 3 = s1 + (s2+s3). 
+ s = s + sl. s1 2 2 

There exists an additive zero element SOES such that, for 
each s ~ E S ,  s i + s o = s  i' 
For each S . E S  there exists -sics such that s + ( - s . )  = 

1 i 1 

s * (s2*s3) + s 2  - (S3'S1) + s3 (S1 'S2)  - - so (Jacobi 
identity). 
1 

3' - s  + s  - s  1 2 1 s1 - (s2+s3) = s 

S 1 ' S  2 = -  ( s 2  sl) 

A multiplicative operation having properties 5, 6 ,  and 7 defines 
a Lie product; and an example is given by the commutator of ma- 
trices & and B defined by I" 

A - B = [&,%I = AB - BA ( 1 5 6 )  
M n m  Iylr)l)l) *AM 

where 5% is interpreted as ordinary matrix multiplication. 
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L e t  S be a subspace of a l i n e a r  vector space  over  a f i e l d  F 
such t h a t  S i s  c l o s e d  under a d d i t i o n  over V I  where V i s  a sub- 
f i e l d  of  F. ( I f  s l r s 2 & S  and v ~ , v ~ E V ,  t h e n  v ~ s ~ + v ~ s ~ E S . )  Then if 
S i s  a r i n g  under a L i e  p roduc t ,  S i s  sa id  t o  be a L i e  a l g e b r a  
ove r  V. 

L e t  & be a g iven  c o n s t a n t  m e t r i c ,  and l e t  , R i  be  an o p e r a t o r  
d e f i n e d  over  t h e  f i e l d  F of complex numbers. L e t  (+) deno te  
o r d i n a r y  m a t r i x  a d d i t i o n ,  and t h e  commutator be  t aken  as t h e  L i e  
p roduct .  Then it i s  e a s i l y  v e r i f i e d  t h a t  S = - j R ,  where R i s  t h e  
range of o p e r a t o r s  f o r  which (WI * /url 

i s  a L i e  a l g e b r a  ove r  t h e  f i e l d  V of rea l  numbers. The met r ic  K, 
t h u s  d e f i n e s  a L i e  a l g e b r a  f o r  S .  Furthermore,  t h e  s p e c i f i c a t i o n  
of a d d i t i o n a l  independent ,  c o n s r a n t  m e t r i c s  w i l l  d e f i n e  a L i e  sub- 
a l g e b r a .  

A nonempty set  G I  t o g e t h e r  w i th  a b i n a r y  o p e r a t i o n  ( o ) ,  i s  
c a l l e d  a group provided:  

1. 

2 .  

3 .  

4. 

There e x i s t s  an i d e n t i t y  e lement  l & G  such t h a t ,  f o r  a l l  
giEG, 

0 l = l o g i - g i  - 
g i  - 

- 
For every  gi&G, t h e r e  e x i s t s  an i n v e r s e  g '€GI  such t h a t  i 

I t  can be shown t h a t  t h e  i d e n t i t y  and t h e  i n v e r s e  must be unique. 
I f  G has  only  t h e  group p r o p e r t y ,  G i s  c a l l e d  a groupoid.  

Again l e t  & b e  a g iven  c o n s t a n t  m e t r i c .  Then it i s  eas i ly  
v e r i f i e d  t h a t  k ( z , z , )  , where fi i s  t h e  range  of m a t r i c a n t s  f o r  
which 

I 
7 

= &, ,Mi&k 
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is a group under ordinary matrix multiplication. It is a contin- 
uous, finite group, in that it can be parameterized in terms of 
continuous values of a finite number of parameters. We have seen 
that if .I& is a matricant of &, then Eqs. (8) and ( 3 6 )  have the 
same constant solutions 5. The metric 5 thus defines a group 3, 
and an associated Lie algebra for 2. The group P-J is known as a 
Lie group. The specification of additional independent, constant 
metrics will define a Lie subgroup and an associated Lie sub- 
algebra. (A rigorous treatment of what is meant by continuous, 
finite, and Lie groups is beyond the scope of this discussion. 
There are many excellent references; e . g . ,  refs. 1 2  and 1 3 . )  

The group% can also be thought of as a matrix representation 
of an abstract group G of transformations characterizing a range 
of systems. A homomorphism of a group G into a group or groupoid 
H is defined as a mapping g + ga of each g&G to h = ga, h&H, satis- 
fying the condition 

The binary operations for G and H need not be the same. We de- 
note by Ga the set of ga for all g&G. Then Ga is a subset of H, 
and the mapping is onto Ga (i.e., for each h&Ga, there exists a 
g&G such that ga = h). It can be shown (ref. 14) that if a is a 
homomorphism of a group G into a group or groupoid H, then Ga is 
a group. The group Ga (or the mapping) is called a representation 
of the group G. If the mapping is one-to-one (i.e., gla = g2a 
implies g1 = g2), the mapping is called an isomorphism, G and Ga 
are said to be isomorphic, and as the groups are essentially the 
same, we write G 5 Ga. The representation is then said to be 
faithful. Thus G "= M can be interpreted as a statement that M is 
a faithful matrix reFresentation of an abstract group G. - 

Letz' be the set of all nonsingular, differentiable, nxn 
matrices P4i (z,zl) , where gi (zl,z1) = 6.  Again it is easily veri- 
fied that these form a group under matrix multiplication. Then 
G' M' is the abstract group encompassing a l l  systems having n 
degreTs of freedom that can be described by a matricant, 5' = G'a 
is a faithful representation of this group, and the set with ele- 
ments -jsi =(dl$i/dz)l$T1, ,Mi&g', is the Lie algebra associated with 
M'. nrvc 

Assume 2' = G'B and Q' = G'y are two faithful matrix repre- 
sentations of GI, where fzr all gi&G', 

giB = g i ,  P . E P '  -1 k 
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and the Pi€%' and &iQ' are of order nxn. Let E' = G'n be defined 
by the mapping, for all gi&G', 

where pix21 is the matrix direct product defined by E q .  
E q .  ( 8 2 ) ,  and since B and y are homomorphisms, we can write 

( 7 7 ) .  By 

for arbitrary g1,g2&G1. Thus M' is a groupoid under matrix multi- 
plication, and q is a homomorphism of the group G '  onto E ' .  Tt 
follows that N' is a group and a representation of G' - but not 
that the repr7sentation is faithful. 

Let G 1 bJ be the group defined by some set of constant me- 
trics E. 
Then 2 = GB and Q = Gy, defined by E q .  (158) for giEG, are sub- 
groups of E' and-Q' respectively, and faithful representations of 
G. This follows Eince B and y are homomorphisms of the group G 
into the groups 2' and Q', and since the representations p' and 
Q' are faithful. Simil%-ly, rl is a homomorphism of G into 2 ' ;  
and 2 = Gq, defined by E q .  (159) for giEG, is a subgroup of g' 
and a representation (not necessarily faithful) of G. 

G is a subgroup of G', and 5 = G a  is a subgroup of E ' .  

m 

Now we note that taking the inverse of the transpose conju- 
gate of all members of the group PJ' ,  or the inverse of the trans- 
pose, constitutes a one-to-one mapping of %' onto itself. Further- 
more, each of these mappings is a homomorphism, since for arbitr- 
ary &"2 M EM' m 

(fi;)-'@ )-l = [(iilE2)-y1 

(MT)-l(MTF1 W l  ..12 = [(M - 1-2 M 
If, that is, we define P' = M'p and Q' = M'T, where for allM.&M', 

nM 1M ryn IWI 4 -  
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t h e n  p and T a r e  isomorphisms. Accordingly,  M I  P' and M '  Q ' .  
W e  can a lso w r i t e  - m w nM 

P' = G ' a p  = G ' B  * 

Q' = G ' a - t  = G ' y  
clh 

and s i n c e  a i s  an isomorphism as w e l l ,  6 = a p  and y = a ~  a r e  i so -  
morphisms. Thus G '  'Z g' and G '  5' Q ' ,  and g' and g' a r e  f a i t h f u l  
r e p r e s e n t a t i o n s  of G I .  A l s o ,  then?% = IvIp and g = &T, d e f i n e d  by 
E q .  ( 1 6 0 )  f o r  &Ti&:M,, a r e  f a i t h f u l  r e p r e s e n t a t i o n s  of G .  I t  fo l lows  
t h a t  N' = G ' q ,  where f o r  a l l  gi&G' 

M 

i s  a r e p r e s e n t a t i o n  of G ' ,  and t h e  subgroup N = G n  is a represen-  
t a t i o n  of G .  w 

Thus t h e  5'' of E q .  ( 1 4 5 )  , d e r i v i n g  from a l l  El&%' , are s e e n  
t o  form a group ; I ,  and t h e  E'' d e r i v i n g  from 
t h a t  a r e  moreover r e p r e s e n t a t i o n s  r e s p e c t i v e l y  of G '  and G .  But 
are  t h e s e  r e p r e s e n t a t i o n s  f a i t h f u l ?  I n v e r s i o n  of E q .  (138), 

a subgroup F?, 

shows t h a t  X" de te rmines  t h e  Kronecker sum j(~', -sT+. I n s p e c t i o n  
of Eq. (97)mrevea ls  f u r t h e r  t h a t  i f  & ( B I , - R  ) = &(gR, - R T ) ,  t hen  
3 = & + aA, a rea l .  
are n o t  f a i t h f u l ,  5'' determines  R w i t h i n  t h e  i d e n t i t y .  

2 
independent  i n v a r i a n t s  s(FJ t h a t  d e f i n e  t h e  system o p e r a t o r  with-  
i n  t h e  i d e n t i t y .  Not on ly  do a se t  of c o n s t a n t  E d e f i n e  a group,  
and a range  4 of -Mi&&' t h a t  c o n s t i t u t e s  a m a t r i x  r e p r e s e n t a t i o n  
of t h e  group,  b u t  w r i t t e n  as &" t hey  are e x p l i c i t l y  d i s p l a y e d  as 
l i n e a r  combinations of t h e  columns i n  a n o t h e r  ma t r ix  r e p r e s e n t a t i o n  
of t h e  group. 

Thus, wh i l e  s t r i c t l y  t h e  r e p r e s e z z a t i o n s  
.LI* 

The columns &" of a g iven  ~ " E E '  o r  &"EN, are g e n e r a t o r s  of  n 

The system i s  n o t  d e f i n e d  by t h e  c o n s t a n t  5 a l o n e ,  
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and w e  see t h a t  t h e  $ ( z )  are e s s e n t i a l  t o  complete t h e  group- 
t h e o r e t i c a l  r e p r e s e n t a t i o n .  Moreover, t h i s  e x t e n s i o n  of t h e  se t  
of c o n s t a n t s  i s  n o t  j u s t  f o r m a l i s t i c ;  f o r  w e  have seen  t h a t ,  f o r  
nonuniform systems i n  g e n e r a l ,  i n v a r i a n t s  ob ta ined  from t h e  E ( z )  
reasonably  admit of i n t e r p r e t a t i o n  a s  conse rva t ion  l a w s .  From 
t h i s  p o i n t  of v i e w ,  t h e  c lass  of uniform systems can be cons idered  
as an a t y p i c a l  case, r e p r e s e n t e d  by a " s i n g u l a r "  s u r f a c e  of $ I  - 
o r  i f  i n  t h e  range  d e f i n e d  by t h e  c o n s t a n t  5, by a s i n g u l a r  s u r -  
f a c e  of E .  
t h e  i n v a r i a n t s  a s  conse rva t ion  laws,  b u t  n o t  an i n a b i l i t y  t o  
o b t a i n  pre-images from t h e  r e p r e s e n t a t i o n .  

Th i s  s i n g u l a r i t y  r e p r e s e n t s  an i n a b i l i t y  t o  i n t e r p r e t  

I f  K " E N  ( o r  $"EE') i s  t h e  m a t r i c a n t  of A(% t T  ,-E ) , t hen  - j A  (Rf ' ,  

-$T) i s  7 mgmber of t h e  L i e  a l g e b r a  a s s o c i a t e d  wi th  ( o r  % I ) .  A - 4  

This  can be v e r i f i e d  d i r e c t l y .  To v e r i f y  c l o s u r e  under commuta- 
t i o n ,  l e t  -]E3 be t h e  commutator of two o p e r a t o r s  -j$i and - j 5 2  
i n  a L i e  a l g e b r a  d e f i n e d  by a set  of c o n s t a n t  K ,  

r(Lh 

Then -153 i s  a l s o  i n  t h e  a l g e b r a .  I t  is  e a s i l y  checked t h a t  

The columns of t h e  m a t r i c a n t  of t h e  o p e r a t o r  k(53,-g3), f ' T  

w i th  - ] f l ( E 3 , - R 3 )  ob ta ined  by commutation of - jA(Rl , -Rl )  and 

- j l l (g2 , -E2) ,  w i l l  a l s o  y i e l d  i n  l i n e a r  combination t h e  2' formed 
from t h e  s p e c i f i e d  5. The o t h e r  c o n d i t i o n s  f o r  t h e  & t o  d e f i n e  a 
L i e  a l g e b r a  f o r  - ] A ( R f , - g T ) ,  ob t a ined  by Eq.  ( 1 6 3 )  f o r  K I ' E N ,  can 
l i k e w i s e  be v e r i f i e d .  

t h e r e f o r e ,  
t T  f ' T  

Jr, w c -  -Y 

? * T  

.M M MA.4 

Kronecker sums i n  t h i s  p a r t i c u l a r  form, t h e n ,  might be des-  
c r i b e d  a s  provid ing  a r e p r e s e n t a t i o n  of conse rva t ion  l a w s  on to  
t h e i r  a l g e b r a .  

I f  t h e  c o n s t a n t  d e f i n e  a group,  what can  be s a i d  of t h e  
range of systems having an i n v a r i a n t  s ( H ) ,  where K = K ( z ) ?  The 
range of m a t r i c a n t s  w i l l  be t h e  s o l u t i o n s  t o  E q .  7 1 2 4 7 ,  

w i th  t h e  boundary c o n d i t i o n  g ( z l , z 1 )  
o p e r a t i o n  f o r  a r b i t r a r y  M M i n  t h i s  range by 

= I-. I f  w e  d e f i n e  a b i n a r y  

-1' *2 
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-1 M = M  O M  = M M  M A43 J-1 M2 -2-1 m-2 

it 
the 

s readily verified that23 also satisfies Eq. 
matricants in this range form a qroupoid under 

1 2 4 ) .  Thus 
the defined 

binary operation. The binary operation is not associative, how- 
ever, and the groupoid does not contain an identity element. Thus 
it is not a group. 
groupoid under this same binary operation. Again it is a homomor- 
phism, and the )$" form a representation of the groupoid defined 
by the invariant s ( K )  . 

The mappingsi +. ($1)-1 X ($)-l is to a 

By way of example, consider the exponential line of Example 2 
in Section VI. The metrics $1 and & ( z )  of Eqs. ( 1 5 2 )  and ( 1 5 4 )  
are solutions respectively to E q s .  (36) and ( 1 2 4 1 ,  for the matri- 
cant of Eq. ( 1 5 0 ) .  Let us denote this matricant by 21. But21 
and K2 are also solutions for .-& 

Thus and 2 2  are in the group defined byS1, and in the group- 
oid defined by,K2. We can obtain another member of the group, 

' sin yz 3 cos yz - - - sin yz 
2 Y  

y z  + - - 
2 Y  

c' e B sin yz 
YZ0 

M = M M  = w.3 -1-2 

(168) 
i- which satisfies 9 3 K a &  = K d ,  but which is not a member of the 

groupoid (PIsK2 (z)I& # 
the groupoid, 

(0 )  ) . We can obtain another member of 
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\ y z  + - - sin y z  

M = M M  M =  #A4 m2.J m2 I 

( 1 6 9 )  

t which satisfies ,M4&2 (2124 = 52 (01 ,  and it is seen that bf4 is also 
a member of the group. 

Members of a groupoid, defined by some &(z), which are gen- 
erated by other members El and g2 that are also members of a group 
defined by always be members of the group. For 
if ,MfK,lMl = 21 and = El, then 

The role of the conservation laws in defining a linear sys- 
tem is thus clear. A system having n degrees of freedom is de- 
fined by its n2 independent invariants s ( & ) .  The constant %, if 
any, including singular &obtained from linear combinations of 
the columns of the nonsingular matrix &", define a group - the 
intersection of the groups defined by the constant Lseparately. 
The & ( z ) ,  which we have seen in general lead to valid conserva- 
tion laws, define a groupoid - the intersection of the groupoids 
defined by the & ( z )  separately. By Eq. (170), intersections of 
groups and groupoids define subgroupoids. The intersection of 
all groups and groupoids is a subgroupoid that defines the sys-  
tem operator within the identity. 

The n2 conservation laws cannot, however, be specified arbit- 
rarily. 
a subgroup of the group formed by taking all possible matrix 
direct products z i  x g j  of the z i ~ 5 ;  and QiEg'. 
a representation of a group-theoretical direct product, a slightly 
different concept that we have not discussed.) This in turn is a 
subgroup of the group of n2 x n2 matricants. That is to say, the 
groups and groupoids defined by some sets of kare disjoint, and 
others are included in one another. 

A specified I&'' must be chosen in the group E ' ,  which is 

(The latter is 
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The FIi&Pl, the group defined by the specified constant E ,  
evaluated at z1 = 0 and any z = L, is also a group. The mapping 
is a homomorphism of the group with elements &(Z,O), EicFI, onto 
the group with elements bJi(L,O), for all FJ~(Z,O)E~. 
an isomorphism, since for any .MM(L,O), ,Mi(z,O)&P4, there will exist 
M .  ( z , O ) E ~ ,  ,Mj (Z,O) # gi(~,O), such that gj (L,O) ,Mi(L,O) - the --I equivalent distributed system for a lumped system is not unique. 
Also the mapping depends on the choice of z = L. But for each 
z = L # 0, the bfi(L,O), bli(Z,O)Ebl, will include all nonsingular 
matrices &-Unitary with respect to the specified E, and will pro- 
vide an unfaithful representation of G. It is thus not necessary 
to determine .Mi(Z,O)&E that map to the group oftnonsingular &- 
Unitary matrices - such pre-images as satisfy ,Mi (z,O)E(z)I$i (z,O)= 
K ( 0 )  , with E(L) = E(O), and where the specified 5 are among the 
R ( 0 ) .  m Furthermore, for each &M(L,O), ;i(z,O)~bI, among the i%j (z,O) 

there will exist matricants of constant 
operators 2.  It is thus not necessary either to determine all 
MiEg - which requires obtaining the matricants of all 5, including 
R(z), with -jg in the associated Lie algebra - in order to obtain 
?he group of lumped-system operators $i(L,O), bTM(z,O)Eg, defined 
by the specified constant E. 

It is not 

that map to _Mi!L,O) 

c 

VIII. CONCLUSIONS 

A distributed system described by a matricant E ( z , z l )  that 
is a member of various groups and groupoids, with an operator -1% 
in corresponding algebras, can be described also by a matricant 
K " ( z , z ~ )  with the same group properties, and an operator -jk(Et, -E') in corresponding algebras. The latter representation ex- 
hibits explicitly the metrics that define the conservation laws 
governing the system. It establishes and elucidates the signifi- 
cance of all the system invariants in characterizing a system. 
Their interpretation as conservation laws can be supported also 
by physical arguments. 

Awl 

This representation can be viewed as the end result of a 
theory developed along parallel lines to existing theory for lin- 
ear, uniform, homogeneous systems. It provides new insights and 
techniques for the analysis and synthesis of uniform systems in 
terms of their conservation laws, and extends to a larger class 
of systems. 

The representation provides a model that can be studied for 
synthesis from any number of specified metrics. Synthesis may in 
principle be carried out directly by filling in the columns of 
M KII(z,zl), since this is an equivalent matricant for the system. 
The problem is that this must be done under the'constraint&''~I&'. 
But an intriguing feature of this approach is that one is specify- 
ing the system and its conservation laws simultaneously and 
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explicitly in forming the matricant $"(z,zl). 
under which this must be done is in fact a fundamental property 
of the group that is revealed by this representation. There are 
inherent restrictions on the conservation laws that can be obeyed 
together by a system. 

The constraint 

Mode coupling in systems is a particularly appropriate area 
of application for this theoretical model. Considerable physical 
insight can be obtained by focusing attention on conservative ex- 
changes other than the power exchange between modes. As should 
be expected, the physical information to be specified or obtained 
is increased if the coupling or the coupled systems are nonuniform, 
although the number of linearly independent invariants from con- 
stant metrics will in general be fewer. The representation pro- 
vides a basis for characterizing, classifying, and synthesizing 
such systems. 

I 
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